Skip to main content
Log in

Numerical study on the hydrodynamic behavior of the dielectric fluid around an electrical discharge generated bubble in EDM

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

In the process of EDM, due to the electrical current, very small bubbles are created within the gap. These bubbles are connected to each other and generate a single bubble. The vapor bubble continues to grow until it finally collapses to small bubbles. The bubble behavior can be ascertained on the distribution of the pressure in the dielectric fluid around the bubble. In this paper, velocity fields and pressure distribution in the dielectric fluid around the bubble that is generated in the process of EDM are investigated numerically. The tool and the workpiece are assumed as two parallel rigid boundaries with dielectric liquid between them. The boundary integral equation method is applied for the numerical solution of the problem. This study can lead to better understanding of the bubble importance in the performance of the electrical discharge machining process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harbon C.H., Deros B.M.D., Ginting A., Fauziah M.: Investigation on the influence of machining parameters when machining tool steel using EDM. J. Mater. Process. Technol. 116, 84–87 (2001)

    Article  Google Scholar 

  2. Abdullah, A.: Voltage Injection and Performance Evaluation in EDM. PhD Thesis, The Victoria University of Manchester (1989)

  3. Carrey, J., Radousky, H.B., Berkowitz, A.E.: Spark-eroded particles: influence of processing parameters. J. Appl. Phys. 95(3), 823–829 (2004)

    Google Scholar 

  4. Hascalik A., Caydas U.: Electrical discharge machining of titanium alloy (Ti-6Al-4V). Appl. Surf. Sci. 253, 9007–9016 (2007)

    Article  Google Scholar 

  5. Egashira K., Matsugasako A., Tsuchiya H., Miyazaki M.: Electrical discharge machining with ultralow discharge energy. Precis. Eng. 30, 414–420 (2006)

    Article  Google Scholar 

  6. Shervani-Tabar M.T., Abdullah A., Shabgard M.R.: Numerical study on the dynamics of an electrical discharge generated bubble in EDM. Eng. Anal. Bound. Elem. 30, 503–514 (2006)

    Article  MATH  Google Scholar 

  7. Shervani-Tabar M.T., Maghsoudi K.: Numerical study on the splitting of a vapour bubble in the process of EDM. Int. J. Adv. Manuf. Technol. 38, 657–673 (2008)

    Article  Google Scholar 

  8. Brujan E.A., Nahen K., Schmidt P., Vogel A.: Dynamics of laser-induced cavitation bubbles near an elastic boundary. J. Fluid Mech. 433, 251–281 (2001)

    Article  MATH  Google Scholar 

  9. Brujan E.A., Nahen K., Schmidt P., Vogel A.: Dynamics of laser-induced cavitation bubbles near an elastic boundary. J. Fluid Mech. 433, 283–314 (2001)

    Article  MATH  Google Scholar 

  10. Klaseboer E., Turangan C.K., Khoo B.C.: Dynamic behaviour of a bubble near an elastic infinite interface. Int. J. Multiph. Flow 32, 1110–1122 (2006)

    Article  MATH  Google Scholar 

  11. Kucherenko V.V., Shamko V.V.: Dynamics of electric-explosion cavities between two solid parallel walls. J. Appl. Mech. Technol. Phys. 27, 112–115 (1986)

    Article  Google Scholar 

  12. Brujan E.A., Pearson A., Blake J.R.: Pulsating, buoyant bubbles close to a rigid boundary and near the null final Kelvin impulse state. Int. J. Multiph. Flow 31, 302–317 (2005)

    Article  MATH  Google Scholar 

  13. Shervani-Tabar M.T., Mobadersany N., Mahmoudi S.M.S., Rezaee-Barmi A.: Velocity field and pressure distribution around a collapsing cavitation bubble during necking and splitting. J. Eng. Math. 71, 349–366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shervani-Tabar M.T., Rezaee-Barmi A., Mahmoudi S.M.S.: Velocity field and pressure distribution around a collapsing cavitation bubble near a rigid boundary during the necking phenomenon. Cav2003, Osaka (2003)

    Google Scholar 

  15. Shervani-Tabar M.T., Rezaee-Barmi A., Mahmoudi S.M.S.: Velocity field and pressure distribution around two parts of a cavitation bubble after its splitting near a rigid boundary. Cav2003, Osaka (2003)

    Google Scholar 

  16. Blake J.R., Gibson D.C.: Growth and collapse of a vapour cavity near a free surface. J. Fluid Mech. 111, 124–140 (1981)

    Article  Google Scholar 

  17. Chahine G.L.: Experimental and asymptotic study of nonspherical bubble collapse. Appl. Sci. Res. 38, 187–197 (1982)

    Article  Google Scholar 

  18. Shima A., Takayama K., Tomita Y.: Mechanism of impact pressure generation from spark-generated bubble collapse near a wall. AIAA J. 21, 55–59 (1983)

    Article  Google Scholar 

  19. Blake J.R., Taib B.B., Doherty G.: Transient cavities near boundaries; Part 1. Rigid boundary. J. Fluid Mech. 170, 479–497 (1986)

    Article  MATH  Google Scholar 

  20. Blake J.R., Gibson D.C.: Cavitation bubbles near boundaries. Ann. Rev. Fluid Mech. 19, 99–123 (1987)

    Article  Google Scholar 

  21. Soh W.K., Shervani-Tabar M.T.: Computer model for a pulsating vapour bubble near a rigid surface. Comput. Fluid Dyn. J. 3(1), 223–236 (1994)

    Google Scholar 

  22. Wang Q.X., Yeo K.S., Khoo B.C., Lam K.Y.: Strong interaction between a buoyancy bubble and a free surface. Theor. Comput. Fluid Dyn. 8, 73–88 (1996)

    Article  MATH  Google Scholar 

  23. Yuan H., Oguz H.N., Prosperetti A.: Growth and collapse of a vapor bubble in a small tube. Int. J. Heat Mass Transf. 42, 3653–3657 (1999)

    Article  Google Scholar 

  24. Chan P.C., Kan K.K., Stuhmiller J.M.: A computational study of bubble-structure interaction. J. Fluids Eng. 122, 783–790 (2000)

    Article  Google Scholar 

  25. Pearson A., Cox E., Blake J.R., Otto S.R.: Bubble interactions near a free surface. Eng. Anal. Bound. Elem. 28, 295–313 (2004)

    Article  MATH  Google Scholar 

  26. Brujan E.A., Ikeda T., Matsumoto Y.: Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Phys. Med. Biol. 50, 4797–4809 (2005)

    Article  Google Scholar 

  27. Shervani-Tabar M.T., Dadvand A., Khoo B.C., Nobari M.R.H.: A numerical and experimental study of a collapsing bubble-induced droplet ejector. Theor. Comput. Fluid Dyn. 24, 297–316 (2009)

    Article  Google Scholar 

  28. Zhang A.M., Yao X.L., Feng L.H.: The dynamic behaviour of a gas bubble near a wall. Ocean Eng. 36, 295–305 (2009)

    Article  Google Scholar 

  29. Best, J.P.: Dynamics of Underwater Explosion. PhD Thesis, University of Wollongong, Australia (1991)

  30. Taib, B.B.: Boundary Integral Method Applied to Cavitation bubble Dynamics. PhD Thesis, University of Wollongong, Australia (1985)

  31. Brujan E.A., Keen G.S., Vogel A., Blake J.R.: The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. Fluids 14, 85–92 (2002)

    Article  Google Scholar 

  32. Ishida, H., Nuntadusit, C., Kimoto, H., Nakagawa, T., Yamamoto, T.: Cavitation Bubble Behavior Near Solid Boundaries. Cav2001:Session A5.003 (2001)

  33. Zhang A.M., Ni B.Y., Song B.Y., Yao X.L.: Numerical simulation of bubble breakup phenomena in a narrow flow field. Appl. Math. Mech. 31(4), 449–460 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad T. Shervani-Tabar.

Additional information

Communicated by P. Jenny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shervani-Tabar, M.T., Mobadersany, N. Numerical study on the hydrodynamic behavior of the dielectric fluid around an electrical discharge generated bubble in EDM. Theor. Comput. Fluid Dyn. 27, 701–719 (2013). https://doi.org/10.1007/s00162-012-0274-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-012-0274-x

Keywords

Navigation