Skip to main content
Log in

Nonlinear dynamics between two differentially heated vertical plates in the presence of stratification

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We consider the numerical simulation of the flow between infinite, differentially heated vertical plates with positive stratification. We use a two-dimensional Boussinesq approximation, with periodic boundary conditions in the vertical direction. The relative stratification parameter \({\gamma=(\frac{1}{4}Ra S)^{1/4}}\) , where Ra is the Rayleigh number and S the adimensional stratification, is kept constant and equal to 8. The Prandtl number is 0.71. We derive a complex Ginzburg-Landau equation from the equations of motion. Coefficients are computed analytically, but we find that the domain of validity of these coefficients is small and rely on the numerical simulation to adjust the coefficients over a wider range of Rayleigh numbers. We show that the Ginzburg-Landau equation is able to accurately predict the characteristics of the periodic solution at moderate Rayleigh numbers. Above the primary bifurcation at Ra = 1.63 × 105, the Ginzburg-Landau model is found to be Benjamin-Feir unstable and to be characterized by modulated traveling waves and phase-defect chaos, which is supported by evidence from the DNS. As the Rayleigh number is increased beyond Ra = 2.7 × 105, nonlinearities become strong and the flow is characterized by cnoidal waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aranson I., Kramer L.: The world of the complex ginzburg-landau equation. Rev. Mod. Phys. 74, 99–142 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Armfield S., Patterson J.: Wave properties of natural-convection boundary layers. J. Fluid Mech. 239, 195–211 (1992)

    Article  Google Scholar 

  3. Bekki N., Nozaki K.: Formations of spatial patterns and holes in the generalized ginzburg-landau equation. Phys. Lett. A 110(3), 133–135 (1985)

    Article  Google Scholar 

  4. Bergholz R.: Instability of steady natural convection in a vertical fluid layer. J. Fluid Mech. 84, 743–768 (1978)

    Article  Google Scholar 

  5. Brusch L., Torcini A., Bar M.: Nonlinear analysis of the Eckhaus instability: modulated amplitude waves and phase chaos with nonzero average phase gradient. Phys. D 174, 152–167 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brusch L., Zimmermann M.G., van Hecke M., Bar M., Torcini A.: Modulated amplitude waves and the transition from phase to defect chaos. Phys. Rev. Lett. 85(1), 86–89 (2000)

    Article  Google Scholar 

  7. Chait A., Korpela S.: The secondary flow and its stability for natural convection in a tall vertical enclosure. J. Fluid Mech. 200, 189–216 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chate H.: Spatio-temporal formation in nonequilibrium complex systems. Nonlinearity 7, 185 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daniels P., Weinstein M.: Nonlinear stability of convective flow between heated vertical plates. J. Eng. Math. 16(23), 377–386 (1989)

    Article  MathSciNet  Google Scholar 

  10. Desrayaud, G., Nguyen, T.: Instabilités thermoconvectives dans une cavité à flux imposé. In: Douzième congrès canadien de Mécanique Appliquée. Ottawa, Canada (1989)

  11. Drazin P., Johnson R.: Solitons: An Introduction. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  12. Elder J.: Laminar free convection in a vertical slot. J. Fluid Mech. 23, 77–98 (1965)

    Article  Google Scholar 

  13. Elder J.: Turbulent free convection in a vertical slot. J. Fluid Mech. 23, 99–111 (1965)

    Article  Google Scholar 

  14. Gill A., Davey A.: Instabilities of a buoyancy-driven system. J. Fluid Mech. 35, 775–798 (1969)

    Article  MATH  Google Scholar 

  15. Henkes R., Quéré P.L.: Three-dimensional instabilities of natural convection flows in differentially heated cavities. J. Fluid Mech. 319, 281–303 (1996)

    Article  MATH  Google Scholar 

  16. Iooss G.: Exitence et stabilité de la solution périodique secondaire intervenant dans les problèmes d’évolution du type navier-stokes. Arch. Rat. Mech. Anal. 47, 301–329 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Janiaud B., Pumir A., Bensimon D., Croquette V.: The Eckhaus instability for traveling waves. Phys. D 55, 269–286 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiracheewanun S., Bain G.M., Armfield S., Behnia M.: Natural convection in the cavity with the differentially heated isoflux boundaries. ANZIAM J. 48, C977–C990 (2006)

    Google Scholar 

  19. Jones F., Ritz C.P., Miksad R., Powers E., Solis R.: Measurement of the local wavenumber and frequency spectrum in a plane wake. Exp. Fluids 6, 365–372 (1988)

    Article  Google Scholar 

  20. Kimura S., Bejan A.: The boundary layer natural convection regime in a rectangular cavity with uniform heat flux from the side. J. Heat Transf. 106, 98–104 (1984)

    Article  Google Scholar 

  21. Knobloch E., Luca J.D.: Amplitude equations for travelling wave convection. Nonlinearity 3, 975 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kudryashov N., Soukharev M.: Popular ansatz methods and solitarry wave solutions of the Kuramoto-Sivashinsky wave equation. Regul. Chaotic Dyn. 14(3), 408–420 (2000)

    MathSciNet  Google Scholar 

  23. Lietzke, A.: Theoretical and experimental investigation of heat transfer by laminar natural convection between parallel plates. Tech. Rep. 1223, NACA (1955)

  24. Manneville P.: Dissipative Structures and Weak Turbulence. Academic, New York (1990)

    MATH  Google Scholar 

  25. McBain G., Armfield S., Desrayaud G.: Instability of the buoyancy layer on an evenly heated vertical wall. J. Fluid Mech. 587, 453–469 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mukolobwiecz N., Chiffaudel A., Daviaud F.: Supercritical Eckhaus instability for surface-tension-driven hydrothermal waves. Phys. Rev. Let. 80, 4661–4664 (1998)

    Article  Google Scholar 

  27. Nagata M., Busse F.: Three-dimensional tertiary motions in a plane shear layer. J. Fluid Mech. 135, 1–26 (1983)

    Article  MATH  Google Scholar 

  28. Newell A., Whitehead J.: Finite band width, finite amplitude convection. J. Fluid Mech. 38, 279–303 (1969)

    Article  MATH  Google Scholar 

  29. Pierce R., Wayne C.: On the validity of mean-field amplitude equations for counterpropagating wave trains. Nonlinearity 8, 769–779 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Quéré P.L.: An improved chebyshev collocation algorithm for direct simulation of 2d turbulent convection in differentially heated cavities. Finite Elem. Des. 16(3–4), 271–283 (1994)

    Article  MATH  Google Scholar 

  31. Stuart J., Di Prima R.: The Eckhaus instability and Benjamin-Feir resonance mechanisms. Proc. R. Soc. London A 362, 27 (1978)

    Article  Google Scholar 

  32. Suslov S.: Two-equation model of mean flow resonances in subcritical flow systems. Discret. Contin. Dyn. Syst. Ser. S 1(1), 165–176 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Suslov S., Paolucci S.: Stability of non-boussinesq convection via the complex ginzburg-landau model. Nonlinearity 35(3), 159–203 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Suslov S.A., Paolucci S.: Nonlinear analysis of convection flow in a tall vertical enclosure under non-boussinesq conditions. J. Fluid Mech. 344, 1–41 (2000)

    Article  MathSciNet  Google Scholar 

  35. Tao J., Busse F.: Oblique roll instability in inclined buoyancy layers. Eur. J. Mech. B Fluids 28, 532–540 (2009)

    Article  MATH  Google Scholar 

  36. Tao J., Xin S., Quéré P.L.: Spatio-temporal instability of the natural-convection boundary layer in thermally stratified medium. J. Fluid Mech. 518, 363–379 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. True H., Nielsen H.B.: On bifurcation of stable periodic flows in an ekman layer and in a convection boundary layer. In: Eppler, R., Fasel, H. (eds) Proc. IUTAM Symposium—Laminar-Turbulent Transition, Springer, Berlin (1979)

    Google Scholar 

  38. Tuckerman L., Barkley D.: Bifurcation analysis of the Eckhaus instability. Phys. D 46, 269–286 (1990)

    Article  MathSciNet  Google Scholar 

  39. Veronis G.: The analogy between rotating and stratified fluids. Ann. Rev. Fluid Mech. 2, 37–66 (1970)

    Article  Google Scholar 

  40. Withlam M., Hoffmann N.: Solitary vortex solutions in a sheared and differentially heated vertical fluid layer with stable stratification. Eur. J. Mech. B/Fluids 30, 245–251 (2011)

    Article  MathSciNet  Google Scholar 

  41. Xin, S.: Simulations numériques de convection naturelle turbulente. Ph.D. thesis, LIMSI—Université Paris-Sud (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bérengère Podvin.

Additional information

Communicated by Eldredge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podvin, B., Le Quéré, P. Nonlinear dynamics between two differentially heated vertical plates in the presence of stratification. Theor. Comput. Fluid Dyn. 27, 89–114 (2013). https://doi.org/10.1007/s00162-012-0261-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-012-0261-2

Keywords

Navigation