Skip to main content
Log in

Nanofluid bioconvection: interaction of microorganisms oxytactic upswimming, nanoparticle distribution, and heating/cooling from below

  • Original Artilce
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The aim of this paper is to develop a theory describing the onset of convection instability (called here nanofluid bioconvecion) that is induced by simultaneous effects produced by oxytactic microorganisms, nanoparticles, and vertical temperature variation. The theory is developed for the situation when the nanofluid occupies a shallow horizontal layer of finite depth. The layer is defined as shallow as long as oxygen concentration at the bottom of the layer is above the minimum concentration required for the bacteria to be active (to actively swim up the oxygen gradient). The lower boundary of the layer is assumed rigid, while at the upper boundary both situations when the boundary is rigid or stress free are considered. Physical mechanisms responsible for the slip velocity between the nanoparticles and the base fluid, such as Brownian motion and thermophoresis, are accounted for in the model. A linear instability analysis is performed, and the resulting eigenvalue problem is solved analytically using the Galerkin method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Do K.H., Jang S.P.: Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick. Int. J. Heat Mass Transf. 53, 2183–2192 (2010)

    Article  MATH  Google Scholar 

  2. Ebrahimi S., Sabbaghzadeh J., Lajevardi M., Hadi I.: Cooling performance of a microchannel heat sink with nanofluids containing cylindrical nanoparticles (carbon nanotubes). Heat Mass Transf. 46, 549–553 (2010)

    Article  Google Scholar 

  3. Fan X., Chen H., Ding Y., Plucinski P.K., Lapkin A.A.: Potential of ‘nanofluids’ to further intensify microreactors. Green Chem. 10, 670–677 (2008)

    Article  Google Scholar 

  4. Li H., Liu S., Dai Z., Bao J., Yang X.: Applications of nanomaterials in electrochemical enzyme biosensors. Sensors 9, 8547–8561 (2009)

    Article  Google Scholar 

  5. Munir A., Wang J., Zhou H.S.: Dynamics of capturing process of multiple magnetic nanoparticles in a flow through microfluidic bioseparation system. IET Nanobiotechnol. 3, 55–64 (2009)

    Article  Google Scholar 

  6. Huh D., Matthews B.D., Mammoto A., Montoya-Zavala M., Hsin H.Y., Ingber D.E.: Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010)

    Article  Google Scholar 

  7. Sokolov A., Goldstein R.E., Feldchtein F.I., Aranson I.S.: Enhanced mixing and spatial instability in concentrated bacterial suspensions. Phys. Rev. E 80, 031903 (2009)

    Article  Google Scholar 

  8. Tsai T., Liou D., Kuo L., Chen P.: Rapid mixing between ferro-nanofluid and water in a semi-active Y-type micromixer. Sens. Actuators A-Phys. 153, 267–273 (2009)

    Article  Google Scholar 

  9. Shitanda I., Yoshida Y., Tatsuma T.: Microimaging of algal bioconvection by scanning electrochemical microscopy. Anal. Chem. 79, 4237–4240 (2007)

    Article  Google Scholar 

  10. Hillesdon A.J., Pedley T.J., Kessler J.O.: The development of concentration gradients in a suspension of chemotactic bacteria. Bull. Math. Biol. 57, 299–344 (1995)

    MATH  Google Scholar 

  11. Hillesdon A.J., Pedley T.J.: Bioconvection in suspensions of oxytactic bacteria: linear theory. J. Fluid Mech. 324, 223–259 (1996)

    Article  MATH  Google Scholar 

  12. Metcalfe A.M., Pedley T.J.: Bacterial bioconvection: weakly nonlinear theory for pattern selection. J. Fluid Mech. 370, 249–270 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Metcalfe A.M., Pedley T.J.: Falling plumes in bacterial bioconvection. J. Fluid Mech. 445, 121–149 (2001)

    Article  MATH  Google Scholar 

  14. Pedley T.J.: Instability of uniform micro-organism suspensions revisited. J. Fluid Mech. 647, 335–359 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kuznetsov A.V.: Thermo-bioconvection in a suspension of oxytactic bacteria. Int. Commun. Heat Mass Transf. 32, 991–999 (2005)

    Article  Google Scholar 

  16. Kuznetsov A.V.: Investigation of the onset of thermo-bioconvection in a suspension of oxytactic microorganisms in a shallow fluid layer heated from below. Theor. Comput. Fluid Dyn. 19, 287–299 (2005)

    Article  MATH  Google Scholar 

  17. Kuznetsov A.V.: The onset of thermo-bioconvection in a shallow fluid saturated porous layer heated from below in a suspension of oxytactic microorganisms. Eur. J. Mech. B-Fluids 25, 223–233 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Avramenko A.A., Kuznetsov A.V.: Bio-thermal convection caused by combined effects of swimming of oxytactic bacteria and inclined temperature gradient in a shallow fluid layer. Int. J. Numer. Methods Heat Fluid Flow 20, 157–173 (2010)

    Article  Google Scholar 

  19. Kuznetsov A.V., Avramenko A.A.: Effect of small particles on the stability of bioconvection in a suspension of gyrotactic microorganisms in a layer of finite depth. Int. Commun. Heat Mass Transf. 31, 1–10 (2004)

    Article  Google Scholar 

  20. Geng P., Kuznetsov A.V.: Effect of small solid particles on the development of bioconvection plumes. Int. Commun. Heat Mass Transf. 31, 629–638 (2004)

    Article  Google Scholar 

  21. Geng P., Kuznetsov A.V.: Settling of bidispersed small solid particles in a dilute suspension containing gyrotactic micro-organisms. Int. J. Eng. Sci. 43, 992–1010 (2005)

    Article  MATH  Google Scholar 

  22. Kuznetsov A.V., Geng P.: The interaction of bioconvection caused by gyrotactic micro-organisms and settling of small solid particles. Int. J. Numer. Methods Heat Fluid Flow 15, 328–347 (2005)

    Article  Google Scholar 

  23. Geng P., Kuznetsov A.V.: Introducing the concept of effective diffusivity to evaluate the effect of bioconvection on small solid particles. Int. J. Transp. Phenom. 7, 321–338 (2005)

    Google Scholar 

  24. Kuznetsov A.V.: Non-oscillatory and oscillatory nanofluid bio-thermal convection in a horizontal layer of finite depth. Eur. J. Mech. B/Fluids. 30, 156–165 (2011)

    Article  Google Scholar 

  25. Buongiorno J.: Convective transport in nanofluids. J. Heat Transf.-Trans. ASME 128, 240–250 (2006)

    Article  Google Scholar 

  26. Nield D.A., Kuznetsov A.V.: The onset of convection in a horizontal nanofluid layer of finite depth. Eur. J. Mech. B/Fluids. 29, 217–223 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nield D.A., Kuznetsov A.V.: The effect of local thermal nonequilibrium on the onset of convection in a nanofluid. J. Heat Transf.-Trans. ASME 132, 052405 (2010)

    Article  Google Scholar 

  28. Anoop K.B., Sundararajan T., Das S.K.: Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int. J. Heat Mass Transf. 52, 2189–2195 (2009)

    Article  MATH  Google Scholar 

  29. Krishnamurthy S., Lhattacharya P., Phelan P.E., Prasher R.S.: Enhanced mass transport in nanofluids. Nano Lett. 6, 419–423 (2006)

    Article  Google Scholar 

  30. Finlayson B.A.: The Method of Weighted Residuals and Variational Principles. Academic Press, New York (1972)

    MATH  Google Scholar 

  31. Chandrasekhar S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, A.V. Nanofluid bioconvection: interaction of microorganisms oxytactic upswimming, nanoparticle distribution, and heating/cooling from below. Theor. Comput. Fluid Dyn. 26, 291–310 (2012). https://doi.org/10.1007/s00162-011-0230-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-011-0230-1

Keywords

Navigation