Skip to main content
Log in

Cooling performance of a microchannel heat sink with nanofluids containing cylindrical nanoparticles (carbon nanotubes)

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this paper, we present the numerical method for explaining the cooling performance of a microchannel heat sink with carbon nanotubes (CNTs)-fluid suspensions. Here we will show that with increase of nanolayer thickness of multiwalled carbon nanotubes (MWCNTs) the microchannel heat sink temperature gradient will be decreased. By using a theoretical model for explaining the enhancement in the effective thermal conductivity of nanotubes (cylindrical shape particles) for use in nanotube-in-fluid suspension, we investigate the temperature contours and thermal resistance of a microchannel heat sink with MWCNTs (with ~25 nm diameter) dispersed in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A r :

Aspect ratio of heat sink channel (W/H)

c p :

Specific heat of fluid at constant pressure

d f :

Diameter of fluid molecule

d nl :

Nanolayer thickness

d np :

Nanoparticle diameter

D :

Complex nanoparticle diameter

D c :

Characteristic length

f :

Volume fraction of nanoparticles in a base fluid

h :

Heat transfer coefficient

H :

Heat sink channel and fin height

K :

Thermal conductivity

l f :

Mean-free path of molecules in a fluid

l np :

Length of cylindrical nanoparticle

M :

Radius ratio of complex and simple nanoparticles (r np + d nl)/r np

M′ :

Parameter in the Eq. 2, M 2 − 1

Nu :

Nusselt number, hD c /K f

Pr f :

Prandtl number of fluid, μ f ρ f c P /K f

q :

Heat flux

Re f :

Reynolds number of fluid flow, u m D c /ν f

r np :

Nanoparticle radius

T :

Temperature

u :

Velocity in x-direction

u m :

Mean velocity in the heat sink channel

W :

Heat sink channel plus fin width, W c  + W F

W c :

Heat sink channel width

W F :

Heat sink fin width (thickness)

x, y, z:

Cartesian coordinates

ɛ :

Porosity of a heat sink, W c /W

θ :

Thermal resistance

κ :

Constant related to Kapitza resistance

μ :

Dynamic viscosity

ρ :

Density

eff:

Effective

f :

Fluid

nf:

Nanofluid

nl:

Nanolayer

np:

Nanoparticle

References

  1. Ryu JH, Choi DH, Kim SJ (2003) Three-dimensional numerical optimization of a manifold microchannel heat sink. Int J Heat Mass Transf 46:1553–1562

    Article  MATH  Google Scholar 

  2. Ryu JH, Choi DH, Kim SJN (2002) Numerical optimization of the thermal performance of a microchannel heat sink. Int J Heat Mass Transf 45:2823–2827

    Article  MATH  Google Scholar 

  3. Jang SP, Choi SUS (2006) Cooling performance of a microchannel heat sink with nanofluids. Appl Therm Eng 26:2457–2463

    Article  Google Scholar 

  4. Chein R, Huang G (2005) Analysis of microchannel heat sink performance using nanofluids. Appl Therm Eng 25:3104–3114

    Article  Google Scholar 

  5. Min JY, Jang SP, Kim SJ (2004) Effect of tip clearance on the cooling performance of a microchannel heat sink. Int J Heat Mass Transf 47:1099–1103

    Article  Google Scholar 

  6. Xie H, Wang J, Xi T, Liu Yan, Ai Fei (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91:4568–4572

    Article  Google Scholar 

  7. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863

    Article  MATH  Google Scholar 

  8. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett 79:2252

    Article  Google Scholar 

  9. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett 78:718–724

    Article  Google Scholar 

  10. Xie H, Youn HW, Choi M (2003) Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. J Appl Phys 94:4967–4971

    Article  Google Scholar 

  11. Hone J, Whitney M, Zettl A (1999) Thermal conductivity of single-walled carbon nanotubes. Synth Met 103:2498–2499

    Article  Google Scholar 

  12. Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616

    Article  Google Scholar 

  13. Kim P, Shi L, Majumdar A, Mceuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502–215505

    Article  Google Scholar 

  14. Foygel M, Morris RD, Anez D, French S, Sobolev VL (2005) Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys Rev B 71:104201–104208

    Article  Google Scholar 

  15. Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318

    Article  Google Scholar 

  16. Ren Y, Xie H, Cai A (2005) Effective thermal conductivity of nanofluids containing spherical nanoparticles, J. Phys D Appl Phys 38:3958–3961

    Article  Google Scholar 

  17. Sabbaghzadeh J, Ebrahimi S (2007) Effective of thermal conductivity of nanofluids containing cylindrical nanoparticles. Int J Nanosci 6:45–49

    Article  Google Scholar 

  18. Ebrahimi S, Sabbaghzadeh J, Lajevardi M, Hadi I (2007) Nanolayer effects in thermal conductivity of nanofluids containing cylindrical nanoparticles. In: IEEE-Nano 2007, 2–5 Aug, Hong Kong

  19. Yamada E, Ota T (1980) Effective thermal conductivity of dispersed materials. Wa¨rme- und Stoffu¨bertragung 13:27–37

  20. Zhang X, Gu H, Fujii M (2007) Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Exp Therm Fluid Sci 31:593–599

    Article  Google Scholar 

  21. Assael MG, Chen CF, Metaxa I, Wakeham WA (2004) Thermal conductivity of suspensions of carbon nanotubes in water. Int J Thermophys 25:971–985

    Article  Google Scholar 

  22. Einstein A (1959) Investigations of the theory of the Brownian movement. Dover, New York, 64 pp

  23. Smith JM, Van Ness HC (1987) Introduction to chemical engineering thermodynamics. McGraw-Hill, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadollah Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebrahimi, S., Sabbaghzadeh, J., Lajevardi, M. et al. Cooling performance of a microchannel heat sink with nanofluids containing cylindrical nanoparticles (carbon nanotubes). Heat Mass Transfer 46, 549–553 (2010). https://doi.org/10.1007/s00231-010-0599-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-010-0599-1

Keywords

Navigation