Skip to main content
Log in

Systematic multiscale models for deep convection on mesoscales

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

This paper builds on recent developments of a unified asymptotic approach to meteorological modeling [ZAMM, 80: 765–777, 2000, SIAM Proc. App. Math. 116, 227–289, 2004], which was used successfully in the development of Systematic multiscale models for the tropics in Majda and Klein [J. Atmosph. Sci. 60: 393–408, 2003] and Majda and Biello [PNAS, 101: 4736–4741, 2004]. Biello and Majda [J. Atmosph. Sci. 62: 1694–1720, 2005]. Here we account for typical bulk microphysics parameterizations of moist processes within this framework. The key steps are careful nondimensionalization of the bulk microphysics equations and the choice of appropriate distinguished limits for the various nondimensional small parameters that appear. We are then in a position to study scale interactions in the atmosphere involving moist physics. We demonstrate this by developing two systematic multiscale models that are motivated by our interest in mesoscale organized convection. The emphasis here is on multiple length scales but common time scales. The first of these models describes the short-time evolution of slender, deep convective hot towers with horizontal scale ~ 1  km interacting with the linearized momentum balance on length and time scales of (10 km/3 min). We expect this model to describe how convective inhibition may be overcome near the surface, how the onset of deep convection triggers convective-scale gravity waves, and that it will also yield new insight into how such local convective events may conspire to create larger-scale strong storms. The second model addresses the next larger range of length and time scales (10 km, 100 km, and 20 min) and exhibits mathematical features that are strongly reminiscent of mesoscale organized convection. In both cases, the asymptotic analysis reveals how the stiffness of condensation/evaporation processes induces highly nonlinear dynamics. Besides providing new theoretical insights, the derived models may also serve as a theoretical devices for analyzing and interpreting the results of complex moist process model simulations, and they may stimulate the development of new, theoretically grounded sub-grid-scale parameterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannon P.R. (1995): Potential vorticity conservation, hydrostatic adjustment, and the anelastic approximation. J. Atmos. Sci.52, 2302–2312

    Article  MathSciNet  ADS  Google Scholar 

  2. Biello J.A., Majda A.J. (2005): A new multiscale model for the Madden Julian oscillation. J. Atmosph. Sci. 62, 1694–1720

    Article  MathSciNet  ADS  Google Scholar 

  3. Botta N., Klein R., Almgren A. (1999): Asymptotic analysis of a dry atmosphere, ENUMATH Jyväskylä, Finland

    Google Scholar 

  4. Botta, N., Klein, R., Almgren, A.: Dry Atmosphere Asymptotics, PIK Report 55, Potsdam Institut für Klimafolgenforschung (1999)

  5. Clark T.L. (1977): A small-scale dynamic model using a terrain following coordinate transformation. J. Comp. Phys. 24, 186–215

    Article  MATH  ADS  Google Scholar 

  6. Emanuel, K. A.: Atmospheric Convection, Oxford University Press (1994)

  7. Ghan S., Randall D., Xu K., Cederwall R., Cripe D., Hack J., Iacobellis S., Klein S., Krueger S., Lohmann U., Pedretti J., Robock A., Rotstayn L., Somerville R., Stenchikov G., Sud Y., Walker G., Xie S., Yio J., Zhang M. (2000): A comparison of single column model simulations of summertime midlatitude continental convection. J. Geophys. Res. 105, 2091–2124

    Article  ADS  Google Scholar 

  8. Grabowski W.W. (1998): Toward cloud resolving modeling of large-scale tropical circulations: a simple cloud Microphysics parameterization. J. Atmosph. Sci. 55, 3283–3298

    Article  ADS  Google Scholar 

  9. Grabowski W.W., Smolarkiewicz P.K. (1990): Monotone finite-difference approximations to the advection-condensation problem. Mon. Wea. Rev. 118, 2082–2097

    Article  Google Scholar 

  10. Grabowski W.W., Smolarkiewicz P.K. (1996): On two-time semi-Lagrangian modelling of precipitating clouds. Mon. Wea. Rev. 124, 487–497

    Article  Google Scholar 

  11. Grabowski W.W. (2002): Large-scale organization of moist convection in idealized aquaplanet simulations. Int. J. Num. Meth. Fluids 39, 843–853

    Article  MATH  Google Scholar 

  12. Kessler E.(1969): On the distribution and continuity of water substance in atmospheric circulations. Meteor. Monographs 32, 84

    Google Scholar 

  13. Klein R. (2000): Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods. ZAMM, 80, 765–777

    Article  MATH  Google Scholar 

  14. Klein R. (2004): An applied mathematical view of theoretical meteorology, invited presentation at ICIAM 2003, Sydney, Australia. SIAM Proc. Appl. Math.116, 227–289

    Google Scholar 

  15. Klein R. (2004): Multiple Scales Asymptotics for Atmospheric Flows, 4th European Conference on Mathematics, Stockholm, Sweden

    Google Scholar 

  16. Lipps F.B., Hemler R.S. (1982): A scale analysis of deep moist convection and some related numerical simulations. J. Atmos. Sci.39, 2192–2210

    Article  ADS  Google Scholar 

  17. Majda A.J., Klein R. (2003): Systematic multi-scale models for the tropics. J. Atmosph. Sci. 60, 393–408

    Article  ADS  Google Scholar 

  18. Majda A.J., Biello J.A. (2004): A multiscale model for tropical intraseasonal oscillations. PNAS 101, 4736–4741

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Moncrieff M.W.(1981): A theory of organized steady convection and its transport properties. Q. J. R. Meteor. Soc. 107, 29–50

    Article  ADS  Google Scholar 

  20. Moncrieff M.W. (1992): Organized convective systems: archetypal dynamical models, mass and momentum flux theory, and parameterization. Q. J. R. Meteor. Soc. 118, 819–850

    Article  ADS  Google Scholar 

  21. Pandya E.R., Durran D.R. (1996): The influence of convectively generated thermal forcing on mesoscale circulation around squall lines. J. Atmosph. Sci. 53, 2924–2951

    Article  ADS  Google Scholar 

  22. Parkins C.J, Blythe P.A., Crighton D.G. (2000): Hot spot ignition: the Newtonian limit. Proc. R. Soc. Phys. Eng. Sci. 456, 2857–2882

    MATH  MathSciNet  ADS  Google Scholar 

  23. Pedlosky J. (1987): Geophysical Fluid Dynamics. 2nd edn. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  24. Peters N. (2000): Turbulent Combustion. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  25. Wacker, U.: private communication with Dr. Ulrike Wacker, Alfred Wegener Institut für Polar- und Meeresforschung, Bremerhaven, Germany (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert Klein.

Additional information

Communicated by R. Grimshaw

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, R., Majda, A.J. Systematic multiscale models for deep convection on mesoscales. Theor. Comput. Fluid Dyn. 20, 525–551 (2006). https://doi.org/10.1007/s00162-006-0027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-006-0027-9

Keywords

Pacs

Navigation