Skip to main content
Log in

A Non-Linear SGS Model Based On The Spatial Velocity Increment

Application to LES of fully developed pipe flow and round turbulent jet

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A new subgrid scale (SGS) modelling concept for large-eddy simulation (LES) of incompressible flow is proposed based on the three-dimensional spatial velocity increment δ u i . The new model is inspired by the structure function formulation developed by Métais and Lesieur [39] and applied in the context of the scale similarity type formulation. First, the similarity between the SGS stress tensor τ ij and the velocity increment tensor Q ij = δ u i δ u j is analyzed analytically and numerically using a priori tests of fully developed pipe flow at Re τ = 180. Both forward and backward energy transfers between resolved and unresolved scales of the flow are well predicted with a SGS model based on Q ij . Secondly, a posteriori tests are performed for two families of turbulent shear flows. LES of fully developed pipe flow up to Re τ = 520 and LES of round turbulent jet at Re D = 25000 carried out with a dynamic version of the model provide promising results that confirm the power of this approach for wall-bounded and free shear flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonia, R.A., Kim, J., Browne, L.W.B.: Some characteristics of small-scale turbulence in a turbulent duct flow. J. Fluid Mech. 233, 369–388 (1991)

    Article  ADS  Google Scholar 

  2. Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved subgrid-scale models for large-eddy simulations. AIAA Paper 80, 1357 (1980)

    Google Scholar 

  3. Batchelor, G.K.: The Theory of Homogeneous Turbulence. Cambridge University Press (1953)

  4. Benzi, R., Amati, G., Casciola, C.M., Toschi, F., Piva, R.: Intermittency and scaling laws for wall bounded turbulence. Phys. Fluids 11(6), 1284–1286 (1999)

    Article  ADS  Google Scholar 

  5. Borue, V., Orszag, S.A.: Local energy flux and subgrid-scale statistics in three-dimensional turbulence. J. Fluid Mech. 366, 1–31 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Brun, C., Friedrich, R.: The spatial velocity increment as a tool for SGS modeling. In: Geurts B.J. (ed.) Modern Simulation Strategies for Turbulent Flow. R.T. Edwards Publishing House, pp. 57–84 (2001a)

  7. Brun, C., Friedrich, R.: Modelling the SGS tensor T ij. An issue in the dynamic approach. Phys. Fluids 13(8), 2373–2385 (2001b)

    Article  ADS  Google Scholar 

  8. Crow, S.C., Champagne, F.H.: Orderly structures in jet turbulence. J. Fluid Mech. 48, 547–591 (1971)

    Article  ADS  Google Scholar 

  9. Cerutti, S., Meneveau, C.: Intermittency and relative scaling of subgrid-scale energy dissipation in isotropic turbulence. Phys. Fluids 10(4), 928–937 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Domaradzki, J.A., Loh, K.C.: The subgrid-scale estimation model in the physical space. Phys. Fluids 11, 2330 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  11. Ducros, F., Comte, P., Lesieur, M.: Large-Eddy Simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. J. Fluid Mech. 326, 1–36 (1996)

    Article  MATH  ADS  Google Scholar 

  12. Eggels, J.G.M., Unger, F., Weiss, F., Westerweel, J., Adrian, R.J., Friedrich, R., Nieuwstadt, F.T.M.: Fully developed turbulent pipe flow: A comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175–209 (1994)

    Article  ADS  Google Scholar 

  13. Frisch, U.: Turbulence. The legacy of A.N. Kolmogorov. Cambridge University Press (1995)

  14. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)

    Article  MATH  ADS  Google Scholar 

  15. Germano, M.: Private communication (2000)

  16. Geurts, B.J., Fröhlich, J.: Numerical effects contaminating LES; a mixed story. In: Geurts, B.J. (ed.) Modern Simulation Strategies for Turbulent Flow. R.T. Edwards Publishing House, pp. 309–322 (2001a)

  17. Geurts, B.J., Fröhlich, J.: A framework for predicting accuracy limitations in large-eddy simulation. Phys. Fluids 14(6), 41–44 (2001b)

    Article  Google Scholar 

  18. Ghosal, S., Lund, T.S., Moin, P., Akselvoll, K.: A dynamic localisation model for large-eddy simulation of turbulent flows. J. Fluid Mech. 286, 229–255 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Goutorbe, T., Laurence, D., Maupu, V.: A-priori test of a subgrid scale stress tensor model including anisotropy and backscatter effects. In: Voke, P.R. et al. (eds.) Direct and Large-Eddy Simulation I. Kluwer Academic Publishers, pp. 121–131 (1994)

  20. Härtel, K., Kleiser, L., Unger, F., Friedrich, R.: Subgrid-scale energy transfer in the near-wall region of turbulent flows. Phys. Fluids 6(9), 3131–3143 (1994)

    Article  Google Scholar 

  21. Howard, R.: Private communication (2004)

  22. Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, stream and convergence zones in turbulent flows., Report CTR-S88, Center for Turbulence Research, NASA Ames\Stanford Univ (1988)

  23. Hussein, H.J., Capp, S.P., George, W.K.: Velocity measurements in a high-Reynolds-number, momentum conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 31–75 (1994)

    Article  ADS  Google Scholar 

  24. Hüttl, T.J., Friedrich, R.: Direct numerical simulation of turbulent flows in curved and helically coiled pipes. Comput. & Fluids 30(5), 591–605 (2001)

    Article  MATH  Google Scholar 

  25. Kolmogoroff, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. C.R. Acad. Sci. U.R.S.S. 30, 301 (1941)

    MathSciNet  Google Scholar 

  26. Kravchenko, A.G., Moin, P.: On the effect of numerical errors in large eddy simulations of turbulent flows. J. Comp. Phys. 286, 229–255 (1997)

    Google Scholar 

  27. Krogstad, P.A., Torbergsen, L.E.: Invariant analysis of turbulent pipe flow. Flow Turb. Combust. 64(3), 161–181 (2000)

    Article  MATH  Google Scholar 

  28. Lamballais, E., Métais, O., Lesieur, M.: Spectral-dynamic model for large-eddy simulations of turbulent rotating channel flow. Theor. Comp. Fluid Dyn. 12, 149–177 (1998)

    Article  MATH  Google Scholar 

  29. Leonard, A.: On the energy cascade in large-eddy simulations of turbulent flows. Adv. Geophys. A18, 237 (1974)

    ADS  Google Scholar 

  30. Lesieur, M., Métais, O.: New trends in large-eddy simulations of turbulence. Annu. Rev. Fluid. Mech. 28, 45–82 (1996)

    Article  ADS  Google Scholar 

  31. Lesieur, M.: Turbulence in Fluids, 3rd edn, revised and enlarged. Kluwer Academic Publishers (1997)

  32. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comp. Phys. 103, 16–42 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4, 633–635 (1992)

    Article  ADS  Google Scholar 

  34. Liu, S., Meneveau, C., Katz, J.: On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J. Fluid Mech. 275, 83–119 (1994)

    Article  ADS  Google Scholar 

  35. Lund, T.S., Kaltenbach, H.-J.: Experiments with explicit filtering for LES using a finite-difference method., Annual Research Briefs 1995, Center for Turbulence Research, NASA Ames\Stanford Univ., pp. 91–105 (1996)

  36. Mathew, J., Lechner, R., Foysi, H., Sesterhenn, J., Friedrich, R.: An explicit filtering method for large eddy simulation of compressible flows. Phys. Fluids 15(8), 2279–2289 (2003)

    Article  ADS  Google Scholar 

  37. Meneveau, C., Lund, T., Cabot, W.: A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353–386 (1996)

    Article  MATH  ADS  Google Scholar 

  38. Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Ann. Rev. Fluid. Mech. 28, 45–82 (2001)

    Google Scholar 

  39. Métais, O., Lesieur, M.: Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239, 157–194 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics. MIT Press (1975)

  41. Oberlack, M.: Symmetries of the Navier–Stokes equations and their implications for subgrid-models in large-eddy simulation of turbulence. In: Fundamental Problematic Issues in Turbulence, (eds. A. Gyr, W. Kinzelbach, A. Tsinober, Trends in Mathematics), Birkhäuser Verlag (1999)

  42. Piomelli, U., Moin, P., Ferziger, J.H.: Model consistency in LES of turbulent channel flows. Phys. Fluids 31, 1884–1884 (1988)

    Article  ADS  Google Scholar 

  43. Piomelli, U., Yunfang, Y., Adrian, J.A.: Subgrid-scale energy transfer and near-wall turbulence structure. Phys. Fluids 8(1), 215–224 (1996)

    Article  MATH  ADS  Google Scholar 

  44. Pope, S.B.: Turbulent flows. Cambridge University Press (2000)

  45. Rogallo, R.S., Moin, P.: Numerical simulation of turbulent flows. Ann. Rev. Fluid. Mech. 16, 99–137 (1984)

    Article  ADS  Google Scholar 

  46. Salvetti, M.V., Beux, F.: The effect of the numerical scheme on the subgrid-scale term in large-eddy simulation. Phys. Fluids 10, 3020 (1998)

    Article  ADS  Google Scholar 

  47. da Silva, C.B., Métais, O.: Vortex control of bifurcating jets: a numerical study. Phys. Fluids 14(11), 3798–3819 (2002a)

    Article  ADS  Google Scholar 

  48. da Silva, C.B., Métais, O.: On the influence of coherent structures upon interscale interactions in turbulent plane jets. J. Fluid Mech. 473, 103–145 (2002b)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. den Toonder, J.M.J., Nieuwstadt, F.T.M.: Reynolds number effects in a turbulent pipe flow for low to moderate Re. Phys. Fluids 9, 3398–3409 (1997)

    Article  ADS  Google Scholar 

  50. Urbin, G., Métais, O.: Large-eddy simulations of the three-dimensional spatially developing round jet. In: Chollet, J.P. et al. (eds.) Direct and Large-Eddy Simulation II. Kluwer Academic Publishers (1997)

  51. Van Driest, E.R.: J. Aerospace Sci. 23, 1007 (1956)

    Google Scholar 

  52. Vreman, B., Geurts, B.J., Kuerten, H.: Realizability conditions for the turbulent stress tensor in large-eddy simulation. J. Fluid Mech. 278, 351–362 (1994)

    Article  MATH  ADS  Google Scholar 

  53. Vreman, B., Geurts, B.J., Kuerten, H.: Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech. 339, 357–390 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbulent shear flow : algebraic theory and applications. Phys. Fluids 16(10), 3670–3681 (2004)

    Article  ADS  Google Scholar 

  55. Van de Water, W., Herweijer, J.A.: High-order structure functions of turbulence. J. Fluid Mech. 387, 3–37 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  56. Winckelmans, G.S., Wray, A.A., Vasilyev, O.V., Jeanmart, H.: Explicit-filtering large-eddy simulation using the tensor-diffusivity model supplemented by a dynamic Smagorinsky term. Phys. Fluids 13(5), 1385–1403 (2001)

    Article  ADS  Google Scholar 

  57. Zaman, K.B.M.Q., Hussain, A.K.M.F.: Vortex pairing in a circular jet under controlled excitation. part 1. General jet response. J. Fluid Mech. 101, 449–491 (1980)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Brun.

Additional information

Communicated by R. D. Moser

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brun, C., Friedrich, R. & da Silva, C.B. A Non-Linear SGS Model Based On The Spatial Velocity Increment. Theor. Comput. Fluid Dyn. 20, 1–21 (2006). https://doi.org/10.1007/s00162-005-0006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-005-0006-6

Navigation