Skip to main content
Log in

Exact solution of one problem of imposition of large deformations in a compound slab with pre-deformed layers of incompressible nonlinear elastic micropolar material

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

An exact solution is obtained for a new class of problems on the imposition of large deformations in nonlinear elastic micropolar bodies. The problem of determining the stress state in a compound slab having the shape of a rectangular parallelepiped, composed of pre-deformed layers and subjected to biaxial tension or compression is solved. The layers are made of isotropic incompressible nonlinear elastic micropolar materials. The layers are preliminarily deformed by straightening of circular cylindrical sectors. The solution is based on a class of universal deformations for isotropic incompressible nonlinear elastic micropolar materials. Numerical studies were carried out. The dependencies of stresses, resulting forces and moments on the parameters of initial and additional deformations are presented. Significant nonlinear effects are revealed. The influence of micropolar effects on the stress state has been studied. The solution can be used to verify software designed to numerically solve problems on the imposition of large deformations in bodies made of nonlinear elastic micropolar materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Truesdell, C., Toupin, R.A.: The classical field theories. In: Flügge, S. (ed.) Encyclopaedia of Physics, vol. III/1. Springer, Berlin (1960)

    Google Scholar 

  2. Cosserat, E., Cosserat, F.: Theorie des Corps deformables. A. Hermann et Fils, Paris (1909)

    Google Scholar 

  3. Aero, E.L., Kuvshinskii, E.V.: Fundamental equations of the theory of elastic media with rotationally interacting particles. Sov. Phys. Solid State 2(7), 1272–1281 (1961)

    MathSciNet  Google Scholar 

  4. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15(6), 909–923 (1966)

    MathSciNet  Google Scholar 

  5. Koiter, W.T.: Couple-stress in the theory of elasticity. Proc. Koninklijke Nederl. Akademie Wetenschappen 67, 17–44 (1964)

    MathSciNet  Google Scholar 

  6. Palmov, V.A.: Fundamental equations of the theory of asymmetric elasticity. J. Appl. Math. Mech. 28(3), 496–505 (1964)

    Article  MathSciNet  Google Scholar 

  7. Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon Press, Oxford (1986)

    Google Scholar 

  8. Zubov, L.M.: Universal deformations of micropolar isotropic elastic solids. Math. Mech. Solids 21(2), 152–167 (2016). https://doi.org/10.1177/1081286515577036

    Article  MathSciNet  Google Scholar 

  9. Zubov, L.M.: Universal solutions for isotropic incompressible micropolar solids. Dokl. Phys. 55, 551–555 (2010). https://doi.org/10.1134/S1028335810110054

    Article  ADS  CAS  Google Scholar 

  10. Levin, V.A., Zubov, L.M., Zingerman, K.M.: An exact solution for the problem of flexure of a composite beam with preliminarily strained layers under large strains. Int. J. Solids Struct. 67–68, 244–249 (2015). https://doi.org/10.1016/j.ijsolstr.2015.04.024

    Article  Google Scholar 

  11. Levin, V.A., Zubov, L.M., Zingerman, K.M.: Multiple joined prestressed orthotropic layers under large strains. Int. J. Eng. Sci. 133, 47–59 (2018). https://doi.org/10.1016/j.ijengsci.2018.08.008

    Article  MathSciNet  Google Scholar 

  12. Zingerman, K.M., Zubov, L.M., Belkin, A.E., Biryukov, D.R.: Torsion of a multilayer elastic cylinder with sequential attachment of layers with multiple superposition of large deformations. Contin. Mech. Thermodyn. 35, 1235–1244 (2023). https://doi.org/10.1007/s00161-022-01110-x

    Article  ADS  MathSciNet  CAS  Google Scholar 

  13. Levin, V.A.: Equilibrium of micropolar bodies with predeformed regions. The superposition of large deformations. J. Appl. Math. Mech. 81(3), 223–227 (2017). https://doi.org/10.1016/j.jappmathmech.2017.08.014

    Article  MathSciNet  Google Scholar 

  14. Levin, V.A., Zubov, L.M., Zingerman, K.M.: An exact solution to the problem of biaxial loading of a micropolar elastic plate made by joining two prestrained arc-shaped layers under large strains. Eur. J. Mech. A Solids 88, 104237 (2021). https://doi.org/10.1016/j.euromechsol.2021.104237

    Article  ADS  MathSciNet  Google Scholar 

  15. Zingerman, K.M., Levin, V.A., Zubov, L.M., Belkin, A.E., Biryukov, D.R.: Large Deformations of Biaxial Tension-Compression of the Plate, Consisting Two Pre-deformed Layers Made of Incompressible Treloar Material. In: Badriev, I.B., Banderov, V., Lapin, S.A. (eds.) Mesh Methods for Boundary-Value Problems and Applications. Lecture Notes in Computational Science and Engineering, vol. 141. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-87809-2_46

    Chapter  Google Scholar 

  16. Eremeyev, V.A., Altenbach, H., Lebedev, L.P.: Foundations of Micropolar Mechanics. Springer, Heidelberg (2013)

    Book  Google Scholar 

  17. Altenbach, H., Eremeyev, V.A.: Cosserat media. In: Altenbach, H., Eremeyev, V.A. (eds.) Generalized Continua from the Theory to Engineering Applications, vol. 541. CISM International Centre for Mechanical Sciences, Springer, Vienna (2013). https://doi.org/10.1007/978-3-7091-1371-4_2

    Chapter  Google Scholar 

  18. Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210–221 (2016). https://doi.org/10.1177/1081286515582862

    Article  MathSciNet  Google Scholar 

  19. Ramezani, S., Naghdabadi, R., Sohrabpour, S.: Constitutive equations for micropolar hyper-elastic materials. Int. J. Solids Struct. 46, 2765–2773 (2009). https://doi.org/10.1016/j.ijsolstr.2008.10.009

    Article  Google Scholar 

  20. dell’Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118, 113–125 (2015). https://doi.org/10.1007/s10659-014-9478-1

    Article  MathSciNet  Google Scholar 

  21. Sciarra, G., dell’Isola, F., Ianiro, N., Madeo, A.: A variational deduction of second gradient poroelasticity. Part I: general theory. J. Mech. Mater. Struct. 3(3), 507–526 (2008)

    Article  Google Scholar 

  22. Vershinin, A.: Poroelastoplastic modeling of a borehole stability under small and finite strains using isoparametric spectral element method. Contin. Mech. Thermodyn. 35, 1245–1262 (2023). https://doi.org/10.1007/s00161-022-01117-4

    Article  ADS  MathSciNet  Google Scholar 

  23. Tsukrov, I., Bayraktar, H., Giovinazzo, M., et al.: Finite element modeling to predict cure-induced microcracking in three-dimensional woven composites. Int. J. Fract. 172, 209–216 (2011). https://doi.org/10.1007/s10704-011-9659-x

    Article  CAS  Google Scholar 

  24. Drach, A., Drach, B., Tsukrov, I.: Processing of fiber architecture data for finite element modeling of 3D woven composites. Adv. Eng. Softw. 72, 18–27 (2014). https://doi.org/10.1016/j.advengsoft.2013.06.006

    Article  Google Scholar 

  25. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A 472, 20150790 (2016). https://doi.org/10.1098/rspa.2015.0790

    Article  ADS  Google Scholar 

  26. Burenin, A.A., Tkacheva, A.V.: On calculating the technological operation of the shrink fit assembly of cylindrical parts. Mech. Solids 57, 2038–2049 (2022). https://doi.org/10.3103/S0025654422080088

    Article  ADS  Google Scholar 

  27. Burenin, A.A., Tkacheva, A.V.: Assembly of a two-layered metal pipe by using shrink fit. Mech. Solids 54(4), 559–569 (2019). https://doi.org/10.3103/S0025654419040095

    Article  ADS  Google Scholar 

  28. Levitas, V.I.: Large Deformation of Materials with Complex Rheological Properties at Normal and High Pressure. Nova Science Publishers, New York (1996)

    Google Scholar 

  29. Levitas, V.I.: Recent in situ experimental and theoretical advances in severe plastic deformations, strain-induced phase transformations, and microstructure evolution under high pressure. Mater. Trans. 64(8), 1866–1878 (2023). https://doi.org/10.2320/matertrans.MT-MF2022055

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research for this article was performed in Lomonosov Moscow State University and was financially supported by the Ministry of Science and Higher Education of the Russian Federation as part of the program of the Mathematical Center for Fundamental and Applied Mathematics under the agreement No. 075-15-2022-284 (Sects. 14), and by Russian Scientific Foundation (project No. 22-11-00110, Sects. 57).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Levin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, V.A., Zingerman, K.M. & Belkin, A.E. Exact solution of one problem of imposition of large deformations in a compound slab with pre-deformed layers of incompressible nonlinear elastic micropolar material. Continuum Mech. Thermodyn. (2024). https://doi.org/10.1007/s00161-024-01294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00161-024-01294-4

Keywords

Navigation