Skip to main content
Log in

Non-stationary elastic wave scattering and energy transport in a one-dimensional harmonic chain with an isotopic defect

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The fundamental solution describing non-stationary elastic wave scattering on an isotopic defect in a one-dimensional harmonic chain is obtained in an asymptotic form. The chain is subjected to unit impulse point loading applied to a particle far enough from the defect. The solution is a large-time asymptotics at a moving point of observation, and it is in excellent agreement with the corresponding numerical calculations. At the next step, we assume that the applied point impulse excitation has random amplitude. This allows one to model the heat transport in the chain and across the defect as the transport of the mathematical expectation for the kinetic energy and to use the conception of the kinetic temperature. To provide a simplified continuum description for this process, we separate the slow in time component of the kinetic temperature. This quantity can be calculated using the asymptotics of the fundamental solution for the deterministic problem. We demonstrate that there is a thermal shadow behind the defect: the order of vanishing for the slow temperature is larger for the particles behind the defect than for the particles between the loading and the defect. The presence of the thermal shadow is related to a non-stationary wave phenomenon, which we call the anti-localization of non-stationary waves. Due to the presence of the shadow, the continuum slow kinetic temperature has a jump discontinuity at the defect. Thus, the system under consideration can be a simple model for the non-stationary phenomenon, analogous to one characterized by the Kapitza thermal resistance. Finally, we analytically calculate the non-stationary transmission function, which describes the distortion (caused by the defect) of the slow kinetic temperature profile at a far zone behind the defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In a certain large enough neighbourhood of zero.

  2. Or, better to say, the envelope for the envelope.

  3. This is assumed in our paper, see Sect. 5.2.

References

  1. Shishkina, E.V., Gavrilov, S.N.: Unsteady ballistic heat transport in a 1D harmonic crystal due to a source on an isotopic defect. Continuum Mech. Thermodyn. 35, 431–456 (2023). https://doi.org/10.1007/s00161-023-01188-x

    Article  MathSciNet  ADS  Google Scholar 

  2. Schrödinger, E.: Zur Dynamik elastisch gekoppelter Punktsysteme. Ann. Phys. 349(14), 916–934 (1914). https://doi.org/10.1002/andp.19143491405

    Article  Google Scholar 

  3. Mühlich, U., Abali, B.E., dell’Isola, F.: Commented translation of Erwin Schrödinger’s paper ‘On the dynamics of elastically coupled point systems’ (Zur Dynamik elastisch gekoppelter Punktsysteme). Math. Mech. Solids 26(1), 133–147 (2020). https://doi.org/10.1177/1081286520942955

    Article  Google Scholar 

  4. Rieder, Z., Lebowitz, J.L., Lieb, E.: Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys. 8(5), 1073–1078 (1967). https://doi.org/10.1063/1.1705319

    Article  ADS  Google Scholar 

  5. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377(1), 1–80 (2003). https://doi.org/10.1016/S0370-1573(02)00558-6

    Article  MathSciNet  CAS  ADS  Google Scholar 

  6. Chang, C.W., Okawa, D., Garcia, H., Majumdar, A., Zettl, A.: Breakdown of Fourier’s law in nanotube thermal conductors. Phys. Rev. Lett. 101(7), 075903 (2008). https://doi.org/10.1103/PhysRevLett.101.075903

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Hsiao, T.K., Huang, B.W., Chang, H.K., Liou, S.C., Chu, M.W., Lee, S.C., Chang, C.W.: Micron-scale ballistic thermal conduction and suppressed thermal conductivity in heterogeneously interfaced nanowires. Phys. Rev. B 91(3), 035,406 (2015). https://doi.org/10.1103/PhysRevB.91.035406

  8. Hsiao, T.K., Chang, H.K., Liou, S.C., Chu, M.W., Lee, S.C., Chang, C.W.: Observation of room-temperature ballistic thermal conduction persisting over 8.3 \(\mu \)m in SiGe nanowires. Nat. Nanotechnol. 8(7), 534–538 (2013). https://doi.org/10.1038/nnano.2013.121

  9. Bae, M.H., Li, Z., Aksamija, Z., Martin, P.N., Xiong, F., Ong, Z.Y., Knezevic, I., Pop, E.: Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat. Commun. 4(1), 1734 (2013). https://doi.org/10.1038/ncomms2755

    Article  PubMed  ADS  Google Scholar 

  10. Saito, R., Mizuno, M., Dresselhaus, M.S.: Ballistic and diffusive thermal conductivity of graphene. Phys. Rev. Appl. 9(2), 024,017 (2018). https://doi.org/10.1103/PhysRevApplied.9.024017

  11. Xu, X., Pereira, L.F.C., Wang, Yu., Wu, J., Zhang, K., Zhao, X., Bae, S., Tinh, B., Xie, R., Thong, J.T.L., Hong, B.H., Loh, K.P., Donadio, D., Li, B., Özyilmaz, B.: Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5(1), 3689 (2014). https://doi.org/10.1038/ncomms4689

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Chen, S., Wu, Q., Mishra, C., Kang, J., Zhang, H., Cho, K., Cai, W., Balandin, A.A., Ruoff, R.S.: Thermal conductivity of isotopically modified graphene. Nat. Mater. 11(3), 203–207 (2012). https://doi.org/10.1038/nmat3207

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Kapitza, P.L.: Heat transfer and superfluidity of helium II. Phys. Rev. 60(4), 354–355 (1941). https://doi.org/10.1103/PhysRev.60.354

    Article  ADS  Google Scholar 

  14. Lumpkin, M.E., Saslow, W.M., Visscher, W.M.: One-dimensional Kapitza conductance: Comparison of the phonon mismatch theory with computer experiments. Phys. Rev. B 17(11), 4295–4302 (1978). https://doi.org/10.1103/PhysRevB.17.4295

    Article  CAS  ADS  Google Scholar 

  15. Gendelman, O.V., Paul, J.: Kapitza thermal resistance in linear and nonlinear chain models: Isotopic defect. Phys. Rev. E 103(5), 052113 (2021). https://doi.org/10.1103/PhysRevE.103.052113

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  16. Paul, J., Gendelman, O.V.: Kapitza resistance in basic chain models with isolated defects. Phys. Lett. A 384(10), 126,220 (2020). https://doi.org/10.1016/j.physleta.2019.126220

  17. Teramoto, E., Takeno, S.: Time dependent problems of the localized lattice vibration. Prog. Theor. Phys. 24(6), 1349–1368 (1960). https://doi.org/10.1143/PTP.24.1349

    Article  MathSciNet  ADS  Google Scholar 

  18. Kashiwamura, S.: Statistical dynamical behaviors of a one-dimensional lattice with an isotopic impurity. Prog. Theor. Phys. 27(3), 571–588 (1962). https://doi.org/10.1143/PTP.27.571

    Article  MathSciNet  ADS  Google Scholar 

  19. Hemmer, P.C.: Dynamic and stochastic types of motion in the linear chain. Ph.D. thesis, Norges tekniske høgskole, Trondheim (1959)

  20. Magalinskii, V.B.: Dynamical model in the theory of the Brownian motion. Soviet Phys. JETP-USSR 9(6), 1381–1382 (1959)

    MathSciNet  Google Scholar 

  21. Müller, I.: Durch eine äußere Kraft erzwungene Bewegung der mittleren Masse eineslinearen Systems von \({N}\) durch federn verbundenen Massen [The forced motion of the sentral mass in a linear mass-spring chain of \({N}\) masses under the action of an external force]. Diploma thesis, Technical University Aachen (1962)

  22. Müller, I., Weiss, W.: Thermodynamics of irreversible processes - past and present. Eur. Phys. J. H 37(2), 139–236 (2012). https://doi.org/10.1140/epjh/e2012-20029-1

    Article  Google Scholar 

  23. Turner, R.E.: Motion of a heavy particle in a one dimensional chain. Physica 26(4), 269–273 (1960). https://doi.org/10.1016/0031-8914(60)90022-7

    Article  MathSciNet  CAS  ADS  Google Scholar 

  24. Rubin, R.J.: Statistical dynamics of simple cubic lattices. Model for the study of Brownian motion. J. Math. Phys. 1(4), 309–318 (1960). https://doi.org/10.1063/1.1703664

  25. Rubin, R.J.: Statistical dynamics of simple cubic lattices. Model for the study of Brownian motion. II. J. Math. Phys. 2(3), 373–386 (1961). https://doi.org/10.1063/1.1703723

  26. Rubin, R.J.: Momentum autocorrelation functions and energy transport in harmonic crystals containing isotopic defects. Phys. Rev. 131(3), 964–989 (1963). https://doi.org/10.1103/PhysRev.131.964

    Article  ADS  Google Scholar 

  27. Lee, M.H., Florencio, J., Hong, J.: Dynamic equivalence of a two-dimensional quantum electron gas and a classical harmonic oscillator chain with an impurity mass. J. Phys. A 22(8), L331–L335 (1989). https://doi.org/10.1088/0305-4470/22/8/005

    Article  ADS  Google Scholar 

  28. Yu, M.B.: A monatomic chain with an impurity in mass and Hooke constant. Eur. Phys. J. B 92, 272 (2019). https://doi.org/10.1140/epjb/e2019-100383-1

    Article  MathSciNet  CAS  ADS  Google Scholar 

  29. Takizawa, E.I., Kobayasi, K.: Localized vibrations in a system of coupled harmonic oscillators. Chin. J. Phys. 5(1), 11–17 (1968)

    Google Scholar 

  30. Takizawa, E.I., Kobayasi, K.: On the stochastic types of motion in a system of linear harmonic oscillators. Chin. J. Phys. 6(1), 39–66 (1968)

    Google Scholar 

  31. Kannan, V.: Heat conduction in low dimensional lattice systems. Ph.D. thesis, Rutgers the State University of New Jersey, New Brunswick (2013)

  32. Plyukhin, A.V.: Non-Clausius heat transfer: the example of harmonic chain with an impurity. J. Stat. Mech.: Theory Exp. 2020(6), 063212 (2020). https://doi.org/10.1088/1742-5468/ab837c

  33. Koster, G.F.: Theory of scattering in solids. Phys. Rev. 95(6), 1436–1443 (1954). https://doi.org/10.1103/PhysRev.95.1436

    Article  CAS  ADS  Google Scholar 

  34. Lifšic, M.: Some problems of the dynamic theory of non-ideal crystal lattices. Il Nuovo Cimento 3(S4), 716–734 (1956). https://doi.org/10.1007/BF02746071

    Article  MathSciNet  ADS  Google Scholar 

  35. Fellay, A., Gagel, F., Maschke, K., Virlouvet, A., Khater, A.: Scattering of vibrational waves in perturbed quasi-one-dimensional multichannel waveguides. Phys. Rev. B 55(3), 1707–1717 (1997). https://doi.org/10.1103/physrevb.55.1707

    Article  CAS  ADS  Google Scholar 

  36. Kosevich, Yu.A.: Multichannel propagation and scattering of phonons and photons in low-dimension nanostructures. Phys.-Uspekhi 51(8) (2008). https://doi.org/10.1070/PU2008v051n08ABEH006597

  37. Kosevich, Y.A.: Capillary phenomena and macroscopic dynamics of complex two-dimensional defects in crystals. Prog. Surf. Sci. 55(1), 1–57 (1997). https://doi.org/10.1016/S0079-6816(97)00018-X

    Article  MathSciNet  CAS  ADS  Google Scholar 

  38. Kossevich, A.M.: The Crystal Lattice: Phonons, Solitons. Dislocations. Wiley-VCH, Berlin (1999)

    Book  Google Scholar 

  39. Lifshitz, I.M., Kosevich, A.M.: The dynamics of a crystal lattice with defects. Rep. Prog. Phys. 29(1), 217–254 (1966). https://doi.org/10.1088/0034-4885/29/1/305

    Article  ADS  Google Scholar 

  40. Jex, H.: The transmission and reflection of acoustic and optic phonons from a solid-solid interface treated in a linear chain model. Zeitschrift für Physik B 63(1), 91–95 (1986). https://doi.org/10.1007/BF01312583

    Article  ADS  Google Scholar 

  41. Kakodkar, R.R., Feser, J.P.: A framework for solving atomistic phonon-structure scattering problems in the frequency domain using perfectly matched layer boundaries. J. Appl. Phys. 118(9), 094301 (2015). https://doi.org/10.1063/1.4929780

    Article  CAS  ADS  Google Scholar 

  42. Kuzkin, V.A.: Acoustic transparency of the chain-chain interface. Phys. Rev. E 107(6), 065004 (2023). https://doi.org/10.1103/PhysRevE.107.065004

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  43. Polanco, C.A., Saltonstall, C.B., Norris, P.M., Hopkins, P.E., Ghosh, A.W.: Impedance matching of atomic thermal interfaces using primitive block decomposition. Nanoscale Microscale Thermophys. Eng. 17(3), 263–279 (2013). https://doi.org/10.1080/15567265.2013.787572

    Article  ADS  Google Scholar 

  44. Saltonstall, C.B., Polanco, C.A., Duda, J.C., Ghosh, A.W., Norris, P.M., Hopkins, P.E.: Effect of interface adhesion and impurity mass on phonon transport at atomic junctions. J. Appl. Phys. 113(1), 013516 (2013). https://doi.org/10.1063/1.4773331

    Article  CAS  ADS  Google Scholar 

  45. Steinbrüchel, Ch.: The scattering of phonons of arbitrary wavelength at a solid-solid interface: Model calculation and applications. Zeitschrift für Physik B 24(3), 293–299 (1976). https://doi.org/10.1007/BF01360900

    Article  ADS  Google Scholar 

  46. Mokole, E.L., Mullikin, A.L., Sledd, M.B.: Exact and steady-state solutions to sinusoidally excited, half-infinite chains of harmonic oscillators with one isotopic defect. J. Math. Phys. 31(8), 1902–1913 (1990). https://doi.org/10.1063/1.528689

    Article  MathSciNet  ADS  Google Scholar 

  47. Shishkina, E.V., Gavrilov, S.N., Mochalova, Yu.A.: The anti-localization of non-stationary linear waves and its relation to the localization. The simplest illustrative problem. J. Sound Vib. 553, 117673 (2023). https://doi.org/10.1016/j.jsv.2023.117673

  48. Gavrilov, S.N.: Discrete and continuum fundamental solutions describing heat conduction in a 1D harmonic crystal: discrete-to-continuum limit and slow-and-fast motions decoupling. Int. J. Heat Mass Transfer 194, 123019 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123019

    Article  Google Scholar 

  49. Krivtsov, A.M.: Heat transfer in infinite harmonic one-dimensional crystals. Dokl. Phys. 60(9), 407–411 (2015). https://doi.org/10.1134/S1028335815090062

    Article  CAS  ADS  Google Scholar 

  50. Kuzkin, V.A., Krivtsov, A.M.: Fast and slow thermal processes in harmonic scalar lattices. Journal of Physics: Condensed Matter 29(50), 505,401 (2017). doi: https://doi.org/10.1088/1361-648X/aa98eb

  51. Gavrilov, S.N., Krivtsov, A.M.: Thermal equilibration in a one-dimensional damped harmonic crystal. Phys. Rev. E 100(2), 022117 (2019). https://doi.org/10.1103/PhysRevE.100.022117

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Krivtsov, A.M.: Energy oscillations in a one-dimensional crystal. Dokl. Phys. 59(9), 427–430 (2014). https://doi.org/10.1134/S1028335814090080

    Article  CAS  Google Scholar 

  53. Krivtsov, A.M.: The ballistic heat equation for a one-dimensional harmonic crystal. In: H. Altenbach, et al. (eds.) Dynamical Processes in Generalized Continua and Structures, Advanced Structured Materials, vol. 103, pp. 345–358. Springer (2019). https://doi.org/10.1007/978-3-030-11665-1_19

  54. Sokolov, A.A., Müller, W.H., Porubov, A.V., Gavrilov, S.N.: Heat conduction in 1D harmonic crystal: discrete and continuum approaches. Int. J. Heat Mass Transfer 176, 121442 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121442

    Article  Google Scholar 

  55. Kuzkin, V.A.: Unsteady ballistic heat transport in harmonic crystals with polyatomic unit cell. Continuum Mech. Thermodyn. 31(6), 1573–1599 (2019). https://doi.org/10.1007/s00161-019-00802-1

    Article  MathSciNet  CAS  ADS  Google Scholar 

  56. Gavrilov, S.N., Krivtsov, A.M., Tsvetkov, D.V.: Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply. Continuum Mech. Thermodyn. 31, 255–272 (2019). https://doi.org/10.1007/s00161-018-0681-3

    Article  MathSciNet  ADS  Google Scholar 

  57. Gavrilov, S.N., Krivtsov, A.M.: Steady-state ballistic thermal transport associated with transversal motions in a damped graphene lattice subjected to a point heat source. Continuum Mech. Thermodyn. 34(1), 297–319 (2022). https://doi.org/10.1007/s00161-021-01059-3

    Article  MathSciNet  ADS  Google Scholar 

  58. Gavrilov, S.N., Krivtsov, A.M.: Steady-state kinetic temperature distribution in a two-dimensional square harmonic scalar lattice lying in a viscous environment and subjected to a point heat source. Continuum Mech. Thermodyn. 32(1), 41–61 (2020). https://doi.org/10.1007/s00161-019-00782-2

    Article  MathSciNet  ADS  Google Scholar 

  59. Gavrilov, S.N., Shishkina, E.V., Mochalova, Yu.A.: An example of the anti-localization of non-stationary quasi-waves in a 1D semi-infinite harmonic chain. In: Proceedings of International Conference Days on Diffraction (DD), pp. 67–72. IEEE (2023). https://doi.org/10.1109/DD58728.2023.10325733

  60. Vladimirov, V.S.: Equations of Mathematical Physics. Marcel Dekker, New York (1971)

    Google Scholar 

  61. Montroll, E.W., Potts, R.B.: Effect of defects on lattice vibrations. Phys. Rev. 100(2), 525–543 (1955). https://doi.org/10.1103/PhysRev.100.525

    Article  MathSciNet  CAS  ADS  Google Scholar 

  62. Erdélyi, A.: Asymptotic Expansions. Dover Publications, New York (1956)

    Google Scholar 

  63. Fedoryuk, M.V.: Metod perevala [The Saddle-Point Method]. Nauka [Science], Moscow (1977) (in Russian)

  64. Temme, N.M.: Asymptotic Methods for Integrals. World Scientific, Singapore (2014). https://doi.org/10.1142/9195

  65. Liazhkov, S.D.: Unsteady thermal transport in an instantly heated semi-infinite free end Hooke chain. Continuum Mech. Thermodyn. 35(2), 413–430 (2023). https://doi.org/10.1007/s00161-023-01186-z

    Article  MathSciNet  CAS  ADS  Google Scholar 

  66. Shishkina, E.V., Gavrilov, S.N.: Localized modes in a 1D harmonic crystal with a mass-spring inclusion. In: H. Altenbach, V. Eremeyev (eds.) Advances in Linear and Nonlinear Continuum and Structural Mechanics, Advanced Structured Materials, vol. 198. Springer (2023). https://doi.org/10.1007/978-3-031-43210-1_25

  67. Glushkov, E.V., Glushkova, N.V., Golub, M.V.: Blocking of traveling waves and energy localization due to the elastodynamic diffraction by a crack. Acoust. Phys. 52(3), 259–269 (2006). https://doi.org/10.1134/S1063771006030043

    Article  ADS  Google Scholar 

  68. Glushkov, E., Glushkova, N., Golub, M., Boström, A.: Natural resonance frequencies, wave blocking, and energy localization in an elastic half-space and waveguide with a crack. J. Acoust. Soc. Am. 119(6), 3589–3598 (2006). https://doi.org/10.1121/1.2195269

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A.P. Kiselev, A.M. Krivtsov, V.A. Kuzkin, S.D. Liazhkov, Yu.A. Mochalova for useful and stimulating discussions.

Funding

This work is supported by the Russian Science Foundation (project 22-11-00338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge N. Gavrilov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Non-dimensionalization

The equations of motion for the system under consideration are

$$\begin{aligned} \hat{m}_n\frac{\mathrm d^2 \hat{u}_n}{\mathrm d\hat{t}^2} -\hat{C}(\hat{u}_{n+1}-2\hat{u}_n+\hat{u}_{n-1})= \delta _{n-N} \hat{p}\big (\hat{t}\big ). \end{aligned}$$
(A.1)

Here \(n \in \mathbb {Z}\), \(\hat{t}\) is the time, \({\hat{u}_n}(\hat{t})\) is the displacement of the particle with a number n, \(\hat{m}_n\) is the mass of a particle with a number n:

$$\begin{aligned} \hat{m}_n=\hat{M}+\delta _n(\hat{m}-\hat{M}), \end{aligned}$$
(A.2)

\({\hat{M}}\) is the mass of a regular particle, \({\hat{m}}\) is the mass of the defect, \(\hat{C}\) is the bond stiffness, \({\hat{p}}\) is the external force. The dimensionless equations of motion (3.1) can be obtained by introducing the following dimensionless quantities:

$$\begin{aligned} u_n=\frac{\hat{u}_n}{\hat{A}};\quad t=\omega \hat{t};\quad p=\frac{\hat{p}}{\hat{C}\hat{A}},\quad m=m_0=\frac{\hat{m}}{\hat{M}}. \end{aligned}$$
(A.3)

Here \(\hat{A}\) is the lattice constant (the distance between neighbouring particles); \(\omega {\mathop {=}\limits ^{\text{ def }}}\sqrt{{\hat{C}}/{\hat{M}}}\).

Appendix B: Asymptotics at alternative moving points of observation

The choice of the moving observation fronts is generally ambiguous. One can try to construct asymptotics on moving observation points different from Eq. (5.14). Consider the case \(n\le 0\) (the scattered wave for \(n>0\) as in Sect 5.1.2 can be calculated using the evenness of \((\breve{{\mathcal V}}_n^N)^\textrm{pass}\) with respect to n). Let us estimate the integral \((\mathcal I_n^N)^\textrm{pass}\) on a moving point of observation different from the one given by Eq. (5.14). We can try to use the following moving point of observation instead of Eq. (5.14):

$$\begin{aligned} |n|=wt. \end{aligned}$$
(B.1)

The integral \((\mathcal I_n^N)^\textrm{pass}\) (5.13) can be represented in the form of Eq. (5.15), where

$$\begin{aligned} A^{\textrm{pass}}(\Omega )=\frac{(m-1)\Omega \mathrm e^{\mathrm iN \arccos \frac{2-\Omega ^2}{2}} }{-(4-\Omega ^2)+\mathrm i(m-1)\Omega \sqrt{4-\Omega ^2}}, \end{aligned}$$
(B.2)

\(\phi (\Omega )\) is given by Eq. (5.17). Applying the procedure of the method of stationary phase in the same way as it is done in Sect. 5.1.1, instead of Eq. (5.25) one gets:

$$\begin{aligned} (\breve{\mathcal V}_n^N)^{\textrm{pass}}= & {} -\frac{H(1-w)(m-1)\root 4 \of {1-w^2}}{\sqrt{\pi t}\big (w^2+(m-1)^2(1-w^2)\big )} \Big ( \Big ((m-1)\sqrt{1-w^2}\cos F+w\sin F\Big ) \cos \Big (\omega t+\frac{\pi }{4}\Big )\nonumber \\{} & {} + \Big (w\cos F-(m-1)\sqrt{1-w^2}\sin F\Big ) \sin \Big (\omega t+\frac{\pi }{4} \Big ) \Big ) +O(t^{-1}). \end{aligned}$$
(B.3)

Here

$$\begin{aligned} F= & {} F_0\arccos (2w^2-1), \end{aligned}$$
(B.4)
$$\begin{aligned} F_0= & {} N. \end{aligned}$$
(B.5)

Formula (B.3) can be transformed into the form of Eq. (5.26), wherein we should substitute

$$\begin{aligned} \psi _*=\arctan \frac{w\sin F+(m-1)\sqrt{1-w^2}\cos F}{w\cos F-(m-1)\sqrt{1-w^2}\sin F}= F+\psi \end{aligned}$$
(B.6)

instead of \(\psi \) defined by (5.27).

Consider now the following moving point of observation:

$$\begin{aligned} |n|=w(t-N). \end{aligned}$$
(B.7)

In the latter case

$$\begin{aligned} A^{\textrm{pass}}(\Omega )=\frac{(m-1)\Omega \mathrm e^{\mathrm iN(1-w) \arccos \frac{2-\Omega ^2}{2}} }{-(4-\Omega ^2)+\mathrm i(m-1)\Omega \sqrt{4-\Omega ^2}}, \end{aligned}$$
(B.8)

and asymptotics for \((\breve{\mathcal V}_n^N)^{\textrm{pass}}\) has the form (B.3), wherein

$$\begin{aligned} F_0=N(1-w). \end{aligned}$$
(B.9)

Remark B.1

Asymptotics (5.25) can be formally obtained by substituting

$$\begin{aligned} F_0=0 \end{aligned}$$
(B.10)

into Eqs. (B.3), (B.4).

All asymptotics in the form of Eq. (B.3) with various \(F_0\) defined by (B.5), (B.9), (B.10) are formally correct. According to Eqs. (B.4), (B.6), for various \(F_0\) the right-hand side of Eq. (B.3) has the same amplitude but different phases. Moreover, formulae (B.1), (B.7), or (5.14) that we use to return to the variables n and t from w and t are also different. Therefore, the applicability of the corresponding asymptotics as an approximate solution in terms of n and t can also be different. To check which approach is better, we calculate the absolute error

$$\begin{aligned} e_n^N{\mathop {=}\limits ^{\text{ def }}} ({\mathcal V}_n^N)_{\textrm{num}}-V_{n-N}-(\breve{\mathcal V}_n^N)^{\textrm{pass}}_{\textrm{approx}} \end{aligned}$$
(B.11)

using various asymptotics (B.3), (B.4) with \(F_0\) defined by (B.5), (B.9) or (B.10). Here \(({\mathcal V}_n^N)_{\textrm{num}}\) are values for the particle velocities found numerically, \(V_{n-N}\) is given by exact formula (3.10), \(({\mathcal V}_n^N)^{\textrm{pass}}_{\textrm{approx}}\) are found by Eq. (B.3) wherein w is found in accordance with the corresponding formula from set (B.1), (B.7), (5.14). The plot for the error \(e_n^N\) is presented in Fig. 7. One can see that the choice of \(F_0\) in the form of Eq. (B.10) gives the best result, whereas asymptotics with \(F_0\) in the form of (B.5), (B.9) are practically inapplicable as an approximate solution in terms of variables n and t.

Fig. 7
figure 7

Error \(e_n^N\) versus n. The source position is indicated by the vertical magenta solid line. The right leading reflected wave-front is indicated by the vertical magenta dashed line

Appendix C: Fixed position asymptotics for \(n\le 0\): the amplitude expansion near the cut-off frequency in the pass-band

Take \(n\le 0\). For \(C_n^N\) defined by Eq. (7.5), one has

$$\begin{aligned}{} & {} C_n^N(\Omega )= \big (A(\Omega )+ B^{}(\Omega )\big )E_n^N(\Omega ), \end{aligned}$$
(C.1)
$$\begin{aligned}{} & {} A^{}(\Omega )E_n^N(\Omega )=\Omega \breve{\mathcal {G}}_n^N, \qquad B^{}(\Omega )E_n^N(\Omega )=\Omega G_{n-N}. \end{aligned}$$
(C.2)

In the pass-band, \(A^{}(\Omega )\) is defined by Eq. (5.16),

$$\begin{aligned} B(\Omega )= & {} -\frac{1}{\mathrm i\sqrt{4-\Omega ^2}}, \end{aligned}$$
(C.3)
$$\begin{aligned} E_n^N(\Omega )= & {} {\mathrm e}^{\mathrm i({N-n}) \arccos \frac{2-\Omega ^2}{2}}, \end{aligned}$$
(C.4)

see Eqs. (4.5), (4.6), (4.8), (5.1)–(5.5), (5.13). For \(\Omega \rightarrow 2-0\), one can obtain the following asymptotic expansions:

$$\begin{aligned} A(\Omega )= & {} \frac{-\mathrm i}{2 \sqrt{2-\Omega }} - \frac{1}{2 (m-1)} + \frac{\mathrm i(-m^2+2 m+7) \sqrt{2-\Omega }}{16 (m-1)^2} +O(2-\Omega ), \end{aligned}$$
(C.5)
$$\begin{aligned} B(\Omega )= & {} \frac{\mathrm i}{2 \sqrt{2-\Omega } }+\frac{\mathrm i\sqrt{2-\Omega }}{16} +O\big ((2-\Omega )^{3/2}\big ),\end{aligned}$$
(C.6)
$$\begin{aligned} E_n^N(\Omega )= & {} (-1)^{N-n}-2 \mathrm i({N-n}) (-1)^{N-n}\sqrt{2-\Omega }+O(2-\Omega ). \end{aligned}$$
(C.7)

Now, one gets

$$\begin{aligned} A(\Omega )+ B(\Omega )= & {} -\frac{1}{2 (m-1)} +\frac{\mathrm i\sqrt{2-\Omega }}{2 (m-1)^2} +O(2-\Omega ), \end{aligned}$$
(C.8)
$$\begin{aligned} C_n^N(\Omega )= & {} -\frac{(-1)^{N-n}}{2 (m-1)} +\frac{\mathrm i(-1)^{N-n}\big (1+2({N-n})(m-1)\big )\sqrt{2-\Omega }}{2 (m-1)^2}+O(2-\Omega ). \end{aligned}$$
(C.9)

Appendix D: Fixed position asymptotics for \(n\le 0\): the amplitude expansion near the cut-off frequency in the stop-band

In the stop-band, we again have Eqs. (C.1), (C.2), wherein

$$\begin{aligned} A(\Omega )= & {} \frac{\Omega ^3(m-1) }{\Big (-\Omega ^2+2\mathrm e^{-{\text {arccosh}}\frac{\Omega ^2-2}{2}}+2\Big ) \Big (-m\Omega ^2+ 2\mathrm e^{- {\text {arccosh}}\frac{\Omega ^2-2}{2}}+2\Big )}, \end{aligned}$$
(D.1)
$$\begin{aligned} B(\Omega )= & {} \frac{\Omega }{-\Omega ^2+2\mathrm e^{-{\text {arccosh}}\frac{\Omega ^2-2}{2}}+2}, \end{aligned}$$
(D.2)
$$\begin{aligned} E_n^N(\Omega )= & {} (-1)^{{N-n}}\mathrm e^{-({N-n}) {\text {arccosh}}\frac{\Omega ^2-2}{2}}, \end{aligned}$$
(D.3)

see Eqs. (4.5), (4.7), (4.9), (5.1)–(5.5), (5.36). For \(\Omega \rightarrow 2+0\), one can obtain the following asymptotic expansions:

$$\begin{aligned} A(\Omega )= & {} \frac{1}{2 \sqrt{\Omega -2}} -\frac{1}{2 (m-1)} -\frac{\left( m^2-2 m-7\right) \sqrt{\Omega -2}}{16 (m-1)^2} +O(\Omega -2), \end{aligned}$$
(D.4)
$$\begin{aligned} B(\Omega )= & {} -\frac{1}{2 \sqrt{\Omega -2}} +\frac{\sqrt{\Omega -2}}{16} +O\big ((\Omega -2)^{3/2}\big ), \end{aligned}$$
(D.5)
$$\begin{aligned} E_n^N(\Omega )= & {} (-1)^{N-n}\big ( 1 -2 ({N-n})\sqrt{\Omega -2}+O(\Omega -2)\big ). \end{aligned}$$
(D.6)

Now, one gets

$$\begin{aligned} A(\Omega )+ B(\Omega )= & {} -\frac{1}{2 (m-1)}+\frac{\sqrt{\Omega -2}}{2 (m-1)^2} +O(\Omega -2), \end{aligned}$$
(D.7)
$$\begin{aligned} C_n^N(\Omega )= & {} -\frac{(-1)^{N-n}}{2 (m-1)}+\frac{(-1)^{N-n}\big (1+2({N-n})(m-1)\big )\sqrt{\Omega -2}}{2 (m-1)^2} +O(\Omega -2). \end{aligned}$$
(D.8)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, S.N., Shishkina, E.V. Non-stationary elastic wave scattering and energy transport in a one-dimensional harmonic chain with an isotopic defect. Continuum Mech. Thermodyn. (2024). https://doi.org/10.1007/s00161-024-01289-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00161-024-01289-1

Keywords

Navigation