Skip to main content
Log in

Finite element evaluation of fracture toughness and crack propagation in LB-PBF AlSi10Mg

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Fracture toughness properties of additively manufactured (AM) AlSi10Mg were explored computationally in this work. FE investigation of a previous experimental work on AlSi10Mg involving varying building directions was explored through critical crack opening displacement (COD), stationary crack method and extended finite element method (XFEM). Load–displacement curves for each of the varying build cases were simulated using COD method. The knife-edge displacements from the COD models were used in separately created stationary crack models to simulate the J resistance behaviour of the models. The simulated J curves could capture the anisotropy due to the varying build conditions, and the fracture toughness values correlate well with experimental results. Further, XFEM models were created at specimen scale and a meso-scale, respectively, using a ‘sub-modelling’ approach. The meso-scale model could legitimately predict the crack path reported in the literature for similar build conditions. Also, a better understanding of the crack propagation behaviour in AlSi10Mg was achieved. A novel modelling strategy was established which could help in future for AM designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

COD:

Critical crack opening displacement

FE:

Finite element

XFEM:

Extended finite element method

AM:

Additively manufactured

LB-PBF:

Laser-based powder bed fusion

J :

J-integral value

\(\delta \) :

Crack mouth opening displacement

\(\delta _{c} \) :

Critical crack mouth opening displacement

\(J_{\textrm{IC}}\) :

Critical values of J-integral

\(K_{\textrm{IC}}\) :

Fracture toughness

\(G_{\textrm{IC}}\) :

Critical value of energy release rate

ASTM:

American Society for Testing and Materials

References

  1. ISO/ASTM: INTERNATIONAL STANDARD ISO/ASTM 52900 Additive manufacturing—General principles—Terminology. International Organization for Standardization, vol. 5, pp 1-26 (2021). https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-2:v1:en. Accessed 1 Oct 2022

  2. Liu, X., Zhao, C., Zhou, X., Shen, Z., Liu, W.: Microstructure of selective laser melted AlSi10Mg alloy. Mater. Des. 168, 107677 (2019). https://doi.org/10.1016/j.matdes.2019.107677

    Article  Google Scholar 

  3. Guo, Q., Zhao, C., Qu, M., Xiong, L., Escano, L.I., Hojjatzadeh, S.M.H., Parab, N.D., Fezzaa, K., Everhart, W., Sun, T., Chen, L.: In-situ characterization and quantification of melt pool variation under constant input energy density in laser powder bed fusion additive manufacturing process. Addit. Manuf. 28, 600–609 (2019). https://doi.org/10.1016/j.addma.2019.04.021

    Article  Google Scholar 

  4. Thijs, L., Verhaeghe, F., Craeghs, T., Humbeeck, J. Van., Kruth, J.P.: A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater. 58, 3303–3312 (2010). https://doi.org/10.1016/j.actamat.2010.02.004

    Article  ADS  Google Scholar 

  5. Xia, M., Gu, D., Yu, G., Dai, D., Chen, H., Shi, Q.: Influence of hatch spacing on heat and mass transfer, thermodynamics and laser processability during additive manufacturing of Inconel 718 alloy. Int. J. Mach. Tools Manuf. 109, 147–157 (2016). https://doi.org/10.1016/j.ijmachtools.2016.07.010

    Article  Google Scholar 

  6. Sheydaeian, E., Fishman, Z., Vlasea, M., Toyserkani, E.: On the effect of throughout layer thickness variation on properties of additively manufactured cellular titanium structures. Addit. Manuf. 18, 40–47 (2017). https://doi.org/10.1016/j.addma.2017.08.017

    Article  Google Scholar 

  7. Liu, F., Lin, X., Huang, C., Song, M., Yang, G., Chen, J., Huang, W.: The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718. J. Alloys Compd. 509, 4505–4509 (2011). https://doi.org/10.1016/j.jallcom.2010.11.176

    Article  Google Scholar 

  8. Chakrabarty, A., Sahu, V.K., Das, A., Mukherjee, S., Gurao, N.P., Chakraborty, P., Bar, H.N., Khutia, N.: Study of the effect of two separate tilt angles of laser scanning lines on the microstructure and mechanical properties in direct metal laser sintered AlSi10Mg alloy. Met. Mater. Int. 28, 250–268 (2022). https://doi.org/10.1007/s12540-021-01080-w

    Article  Google Scholar 

  9. Carter, L.N., Martin, C., Withers, P.J., Attallah, M.M.: The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J. Alloys Compd. 615, 338–347 (2014). https://doi.org/10.1016/j.jallcom.2014.06.172

    Article  Google Scholar 

  10. Zhang, X.C., Zhong, F., Shao, J.B., Zhang, C.C., Hou, N.X., Yuan, G.J., Tu, S.T.: Failure mechanism and mode of Ti-6Al-4V alloy under uniaxial tensile loading: Experiments and micromechanical modeling. Mater. Sci. Eng. A 676, 536–545 (2016). https://doi.org/10.1016/j.msea.2016.09.019

    Article  Google Scholar 

  11. Moridi, A., Demir, A.G., Caprio, L., Hart, A.J., Previtali, B., Colosimo, B.M.: Deformation and failure mechanisms of Ti-6Al-4V as built by selective laser melting. Mater. Sci. Eng. A 768, 138456 (2019). https://doi.org/10.1016/j.msea.2019.138456

    Article  Google Scholar 

  12. Aboulkhair, N.T., Everitt, N.M., Ashcroft, I., Tuck, C.: Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 1, 77–86 (2014). https://doi.org/10.1016/j.addma.2014.08.001

    Article  Google Scholar 

  13. Aboulkhair, N.T., Maskery, I., Tuck, C., Ashcroft, I., Everitt, N.M.: The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment. Mater. Sci. Eng. A 667, 139–146 (2016). https://doi.org/10.1016/j.msea.2016.04.092

    Article  Google Scholar 

  14. Ghasri-Khouzani, M., Peng, H., Attardo, R., Ostiguy, P., Neidig, J., Billo, R., Hoelzle, D., Shankar, M.R.: Comparing microstructure and hardness of direct metal laser sintered AlSi10Mg alloy between different planes. J. Manuf. Process. 37, 274–280 (2019). https://doi.org/10.1016/j.jmapro.2018.12.005

    Article  Google Scholar 

  15. Van Hooreweder, B., Moens, D., Boonen, R., Kruth, J.P., Sas, P.: Analysis of fracture toughness and crack propagation of Ti6Al4V produced by selective laser melting. Adv. Eng. Mater. 14, 92–97 (2012). https://doi.org/10.1002/adem.201100233

    Article  Google Scholar 

  16. Seifi, M., Dahar, M., Aman, R., Harrysson, O., Beuth, J., Lewandowski, J.J.: Evaluation of orientation dependence of fracture toughness and fatigue crack propagation behavior of as-deposited ARCAM EBM Ti-6Al-4V. JOM 67, 597–607 (2015). https://doi.org/10.1007/s11837-015-1298-7

    Article  Google Scholar 

  17. Li, W., Li, S., Liu, J., Zhang, A., Zhou, Y., Wei, Q., Yan, C., Shi, Y.: Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism. Mater. Sci. Eng. A 663, 116–125 (2016). https://doi.org/10.1016/j.msea.2016.03.088

    Article  Google Scholar 

  18. Girelli, L., Tocci, M., Gelfi, M., Pola, A.: Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy. Mater. Sci. Eng. A 739, 317–328 (2019). https://doi.org/10.1016/j.msea.2018.10.026

    Article  Google Scholar 

  19. Read, N., Wang, W., Essa, K., Attallah, M.M.: Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater. Des. 65, 417–424 (2015). https://doi.org/10.1016/j.matdes.2014.09.044

    Article  Google Scholar 

  20. Kempen, K., Thijs, L., Van Humbeeck, J., Kruth, J.P.: Mechanical properties of AlSi10Mg produced by selective laser melting. Phys. Procedia 39, 439–446 (2012). https://doi.org/10.1016/j.phpro.2012.10.059

    Article  ADS  Google Scholar 

  21. Hitzler, L., Hirsch, J., Schanz, J., Heine, B., Merkel, M., Hall, W., Öchsner, A.: Fracture toughness of selective laser melted AlSi10Mg. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 233, 615–621 (2019). https://doi.org/10.1177/1464420716687337

    Article  Google Scholar 

  22. Hitzler, L., Sert, E., Schuch, E., Öchsner, A., Merkel, M., Heine, B., Werner, E.: Fracture toughness of L-PBF fabricated aluminium-silicon: a quantitative study on the role of crack growth direction with respect to layering. Prog. Addit. Manuf. 5, 259–266 (2020). https://doi.org/10.1007/s40964-020-00113-x

    Article  Google Scholar 

  23. Suryawanshi, J., Prashanth, K.G., Scudino, S., Eckert, J., Prakash, O., Ramamurty, U.: Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Mater. 115, 285–294 (2016). https://doi.org/10.1016/j.actamat.2016.06.009

    Article  ADS  Google Scholar 

  24. Tiryakioglu, M.: Fracture toughness potential of cast Al-7%Si-Mg alloys. Mater. Sci. Eng. A 497, 512–514 (2008). https://doi.org/10.1016/j.msea.2008.06.037

    Article  Google Scholar 

  25. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999). https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S

    Article  MATH  Google Scholar 

  26. Hitzler, L., Janousch, C., Schanz, J., Merkel, M., Heine, B., Mack, F., Hall, W., Öchsner, A.: Direction and location dependency of selective laser melted AlSi10Mg specimens. J. Mater. Process. Technol. 243, 48–61 (2017). https://doi.org/10.1016/j.jmatprotec.2016.11.029

    Article  Google Scholar 

  27. Tang, M., Pistorius, P.C.: Anisotropic mechanical behavior of AlSi10Mg parts produced by selective laser melting. JOM 69, 516–522 (2017). https://doi.org/10.1007/s11837-016-2230-5

    Article  Google Scholar 

  28. Paul, M.J., Liu, Q., Best, J.P., Li, X., Kruzic, J.J., Ramamurty, U., Gludovatz, B.: Fracture resistance of AlSi10Mg fabricated by laser powder bed fusion. Acta Mater. 211, 116869 (2021). https://doi.org/10.1016/j.actamat.2021.116869

    Article  Google Scholar 

  29. Systèmes, D.: Abaqus Analysis User’s Guide. 14 (2014). http://130.149.89.49:2080/v6.14/books/usb/default.htm. Accessed 1 Oct 2022

  30. Yang, W., Jung, Y.-G., Kwak, T., Kim, S.K., Lim, H., Kim, D.-H.: Microstructure and mechanical properties of an Al-Mg-Si-Zr alloy processed by L-PBF and subsequent heat treatments. Materials 15, 5089 (2022). https://doi.org/10.3390/ma15155089

    Article  ADS  Google Scholar 

  31. Melenk, J.M., Babuška, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139, 289–314 (1996). https://doi.org/10.1016/S0045-7825(96)01087-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999). https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

    Article  MathSciNet  MATH  Google Scholar 

  33. Sukumar, N., Huang, Z.Y., Prévost, J.H., Suo, Z.: Partition of unity enrichment for bimaterial interface cracks. Int. J. Numer. Methods Eng. 59, 1075–1102 (2004). https://doi.org/10.1002/nme.902

    Article  MATH  Google Scholar 

  34. Jain, R., Yadava, M., Nayan, N., Gurao, N.P.: Combinatorial synchrotron diffraction-constitutive modelling-crystal plasticity simulation framework for direct metal laser sintered AlSi10Mg alloy. Materialia 22, 101395 (2022). https://doi.org/10.1016/j.mtla.2022.101395

    Article  Google Scholar 

  35. Nirmal, R.R., Patnaik, B.S.V., Jayaganthan, R.: FEM simulation of high speed impact behaviour of additively manufactured AlSi10Mg alloy. J. Dyn. Behav. Mater. 7, 469–484 (2021). https://doi.org/10.1007/s40870-020-00285-1

    Article  Google Scholar 

  36. Roth, C.C., Tancogne-Dejean, T., Mohr, D.: Plasticity and fracture of cast and SLM AlSi10Mg: high-throughput testing and modeling. Addit. Manuf. 43, 101998 (2021). https://doi.org/10.1016/j.addma.2021.101998

    Article  Google Scholar 

  37. ASTM, E1820-18.: Standard test method for measurement of fracture toughness. https://www.astm.org/e1820-18.html. Accessed 1 Oct 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niloy Khutia.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarty, A., Sahu, R., Kumar, A. et al. Finite element evaluation of fracture toughness and crack propagation in LB-PBF AlSi10Mg. Continuum Mech. Thermodyn. 35, 677–697 (2023). https://doi.org/10.1007/s00161-023-01206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-023-01206-y

Keywords

Navigation