Skip to main content
Log in

Mechanical behavior analysis of FG-CNT-reinforced polymer composite beams via a hyperbolic shear deformation theory

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper presents a hyperbolic shear deformation theory and discusses its application to investigate the bending and buckling behavior of functionally graded carbon nanotubes-reinforced composite (FG-CNTRC) beams. The proposed theory satisfies the parabolic variation of shear stress distribution throughout the thickness and fulfills the zero condition of shear stress on the upper and bottom surfaces of the FG-CNTRC beams. Therefore, there is no need to use any correction factor concerning conventional equivalent single-layer theories. Five different types of CNTs reinforcement distribution are considered for the analysis while assuming a power-law function variation of the material properties in the thickness direction. The governing equations are solved using a finite element method, where several new numerical results are presented to demonstrate the robustness and reliability of the proposed model. The compartive study shows that the proposed element model is: (a) accurate and comparable with the literature; (b) of a faster rate of convergence to the reference solution; (c) excellent in terms of numerical stability; (d) valid for both symmetric and non-symmetric FG-CNTRC beams. Results also show the validity of the proposed formulation for both thin and thick FG-CNTRC beams. In addition, the effect of various material and geometric parameters such as the CNTs volume fraction, distribution patterns of CNTs, boundary conditions, and the length-to-thickness ratio is investigated on the bending and buckling responses of FG-CNTRC beam structures. Several new referential results are also reported for the first time, which will serve as a benchmark for future studies in a similar direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Harris, P.J.: Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century. American Association of Physics Teachers, Maryland (2004)

    Google Scholar 

  2. Salvetat-Delmotte, J.P., Rubio, A.: Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon 40(10), 1729–1734 (2002)

    Google Scholar 

  3. Esawi, A.M., Farag, M.M.: Carbon nanotube reinforced composites: potential and current challenges. Mater. Des. 28(9), 2394–2401 (2007)

    Google Scholar 

  4. Gibson, R.F., Ayorinde, E.O., Wen, Y.F.: Vibrations of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 67(1), 1–28 (2007)

    Google Scholar 

  5. Duc, N.D., Lee, J., Nguyen-Thoi, T., Thang, P.T.: Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler–Pasternak elastic foundations. Aerosp. Sci. Technol. 68, 391–402 (2017)

    Google Scholar 

  6. Khadimallah, M.A., Hussain, M.: Effect of power law index for vibration of armchair and zigzag single walled carbon nanotubes. Steel Compos. Struct. 37(5), 621–632 (2020)

    Google Scholar 

  7. Garg, A., Chalak, H.D., Zenkour, A.M., Belarbi, M.O., Houari, M.S.A.: A review of available theories and methodologies for the analysis of nano isotropic, nano functionally graded, and CNT reinforced nanocomposite structures. Arch. Comput. Methods Eng. (2021). https://doi.org/10.1007/s11831-021-09652-0

    Article  Google Scholar 

  8. Shen, H.S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91(1), 9–19 (2009)

    MathSciNet  Google Scholar 

  9. Fiedler, B., Gojny, F.H., Wichmann, M.H.G., Nolte, M.C.M., Schulte, K.: Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 66(16), 3115–3125 (2006)

    Google Scholar 

  10. Liew, K., Lei, Z., Zhang, L.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015)

    Google Scholar 

  11. Garg, A., Chalak, H.D., Belarbi, M.O., Zenkour, A.M., Sahoo, R.: Estimation of carbon nanotubes and their applications as reinforcing composite materials-An engineering review. Compos. Struct. 272, 114234 (2021)

    Google Scholar 

  12. Garg, A., Belarbi, M.O., Chalak, H.D., Chakrabarti, A.: A review of the analysis of sandwich FGM structures. Compos. Struct. 258, 113427 (2021)

  13. Thostenson, E.T., Ren, Z., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)

    Google Scholar 

  14. Yengejeh, S.I., Kazemi, S.A., Öchsner, A.: Carbon nanotubes as reinforcement in composites: a review of the analytical, numerical and experimental approaches. Comput. Mater. Sci. 136, 85–101 (2017)

    Google Scholar 

  15. Kumar, A., Sharma, K., Dixit, A.R.: Carbon nanotube-and graphene-reinforced multiphase polymeric composites: review on their properties and applications. J. Mater. Sci. 1–43 (2020)

  16. Khaniki, H.B., Ghayesh, M.H.: A review on the mechanics of carbon nanotube strengthened deformable structures. Eng. Struct. 220, 110711 (2020)

    Google Scholar 

  17. Ghannadpour, S., Mohammadi, B., Fazilati, J.: Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method. Compos. Struct. 96, 584–589 (2013)

    Google Scholar 

  18. Nejad, M.Z., Hadi, A., Omidvari, A., Rastgoo, A.: Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen’s non-local elasticity theory. Struct. Eng. Mech. 67(4), 417–425 (2018)

    Google Scholar 

  19. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R.: Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle. Steel Compos. Struct. 32(5), 595–610 (2019)

    Google Scholar 

  20. Safari, M., Mohammadimehr, M., Ashrafi, H.: Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC. Adv. Nano Res. 10(2), 115–128 (2021)

    Google Scholar 

  21. Yas, M., Samadi, N.: Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int. J. Press. Vessels Pip. 98, 119–128 (2012)

    Google Scholar 

  22. Ke, L.L., Yang, J., Kitipornchai, S.: Dynamic stability of functionally graded carbon nanotube-reinforced composite beams. Mech. Adv. Mater. Struct. 20(1), 28–37 (2013)

    Google Scholar 

  23. Nejati, M., Eslampanah, A., Najafizadeh, M.: Buckling and vibration analysis of functionally graded carbon nanotube-reinforced beam under axial load. Int. J. Appl. Mech. 8(01), 1650008 (2016)

    Google Scholar 

  24. Yang, J., Ke, L.L., Feng, C.: Dynamic buckling of thermo-electro-mechanically loaded FG-CNTRC beams. Int. J. Struct. Stab. Dyn. 15(08), 1540017 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Mirzaei, M., Kiani, Y.: Snap-through phenomenon in a thermally postbuckled temperature dependent sandwich beam with FG-CNTRC face sheets. Compos. Struct. 134, 1004–1013 (2015)

    Google Scholar 

  26. Wu, H., Kitipornchai, S., Yang, J.: Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets. Int. J. Struct. Stab. Dyn. 15(07), 1540011 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Shi, Z., Yao, X., Pang, F., Wang, Q.: An exact solution for the free-vibration analysis of functionally graded carbon-nanotube-reinforced composite beams with arbitrary boundary conditions. Sci. Rep. 7(1), 1–18 (2017)

    ADS  Google Scholar 

  28. Ebrahimi, F., Farazamandnia, N.: Thermo-mechanical analysis of carbon nanotube-reinforced composite sandwich beams. Coupled Syst. Mech. 6, 207–227 (2017)

    Google Scholar 

  29. Ebrahimi, F., Farazmandnia, N.: Vibration analysis of functionally graded carbon nanotube-reinforced composite sandwich beams in thermal environment. Adv. Aircraft Spacecr. Sci. 5(1), 107 (2018)

    Google Scholar 

  30. Kiani, Y., Mirzaei, M.: Nonlinear stability of sandwich beams with carbon nanotube reinforced faces on elastic foundation under thermal loading. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 233(5), 1701–1712 (2019)

    Google Scholar 

  31. Mohseni, A., Shakouri, M.: Vibration and stability analysis of functionally graded CNT-reinforced composite beams with variable thickness on elastic foundation. Proc. Inst. Mech. Eng. Part L J. Mater. Design Appl. 233(12), 2478–2489 (2019)

    Google Scholar 

  32. Talebizadehsardari, P., Eyvazian, A., Asmael, M., Karami, B., Shahsavari, D., Mahani, R.B.: Static bending analysis of functionally graded polymer composite curved beams reinforced with carbon nanotubes. Thin-Walled Struct. 157, 107139 (2020)

    Google Scholar 

  33. Tong, G., Liu, Y., Cheng, Q., Dai, J.: Stability analysis of cantilever functionally graded material nanotube under thermo-magnetic coupling effect. Eur. J. Mech. A. Solids 80, 103929 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Zghal, S., Frikha, A., Dammak, F.: Large deflection response-based geometrical nonlinearity of nanocomposite structures reinforced with carbon nanotubes. Appl. Math. Mech. 41(8), 1227–1250 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Truong-Thi, T., Vo-Duy, T., Ho-Huu, V., Nguyen-Thoi, T.: Static and free vibration analyses of functionally graded carbon nanotube reinforced composite plates using CS-DSG3. Int. J. Comput. Meth. 17(03), 1850133 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Xu, Y.: Combined effect of carbon nanotubes distribution and orientation on functionally graded nanocomposite beams using finite element analysis. Mater. Res. Express 8, 015012 (2021)

  37. Nguyen, T.-K., Nguyen, B.-D.: A new higher-order shear deformation theory for static, buckling and free vibration analysis of functionally graded sandwich beams. J. Sandwich Struct. Mater. 17(6), 613–631 (2015)

    Google Scholar 

  38. Thai, C.H., Zenkour, A., Wahab, M.A., Nguyen-Xuan, H.: A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis. Compos. Struct. 139, 77–95 (2016)

    Google Scholar 

  39. Vo, T.P., Thai, H.-T., Nguyen, T.-K., Inam, F., Lee, J.: A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Compos. Struct. 119, 1–12 (2015)

    Google Scholar 

  40. Keshtegar, B., Kolahchi, R., Eyvazian, A., Trung, N.T.: Dynamic stability analysis in hybrid nanocomposite polymer beams reinforced by carbon fibers and carbon nanotubes. Polymers 13(1), 106 (2021)

    Google Scholar 

  41. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Mohamed, S.A., Eltaher, M.A.: Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory. Defence Technol. (2021). https://doi.org/10.1016/j.dt.2021.09.011

    Article  Google Scholar 

  42. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S., Eltaher, M.A.: Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01413-8

    Article  Google Scholar 

  43. Hadji, L., Avcar, M., Civalek, Ö.: An analytical solution for the free vibration of FG nanoplates. J. Braz. Soc. Mech. Sci. Eng. 43(9), 418 (2021)

    Google Scholar 

  44. Hadji, L., Avcar, M.: Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory. Adv. Nano Res. 10(1), 281–293 (2021)

    Google Scholar 

  45. Belarbi, M.O., Houari, M.S.A., Hirane, H., Daikh, A.A., Bordas, S.P.A.: On the finite element analysis of functionally graded sandwich curved beams via a new refined higher order shear deformation theory. Compos. Struct. 279, 114715 (2022)

    Google Scholar 

  46. Van Vinh, P., Tounsi, A., Belarbi, M.O.: On the nonlocal free vibration analysis of functionally graded porous doubly curved shallow nanoshells with variable nonlocal parameters. Eng. Comput. (2022). https://doi.org/10.1007/s00366-022-01687-6

    Article  Google Scholar 

  47. Fan, Y., Wang, H.: The effects of matrix cracks on the nonlinear bending and thermal postbuckling of shear deformable laminated beams containing carbon nanotube reinforced composite layers and piezoelectric fiber reinforced composite layers. Compos. Part B: Eng. 106, 28–41 (2016)

    Google Scholar 

  48. Fan, Y., Wang, H.: Nonlinear vibration of matrix cracked laminated beams containing carbon nanotube reinforced composite layers in thermal environments. Compos. Struct. 124, 35–43 (2015)

    Google Scholar 

  49. Fan, Y., Wang, H.: Nonlinear bending and postbuckling analysis of matrix cracked hybrid laminated plates containing carbon nanotube reinforced composite layers in thermal environments. Compos. Part B: Eng. 86, 1–16 (2016)

    Google Scholar 

  50. Shen, H.S., Xiang, Y.: Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments. Eng. Struct. 56, 698–708 (2013)

    Google Scholar 

  51. Shen, H.S.: Nonlinear analysis of functionally graded fiber reinforced composite laminated beams in hygrothermal environments, Part I: Theory and solutions. Compos. Struct. 125, 698–705 (2015)

    Google Scholar 

  52. Shen, H.S., He, X.Q., Yang, D.Q.: Vibration of thermally postbuckled carbon nanotube-reinforced composite beams resting on elastic foundations. Int. J. Non Linear Mech. 91, 69–75 (2017)

    ADS  Google Scholar 

  53. Yu, Y., Shen, H.S.: A comparison of nonlinear bending and vibration of hybrid metal/CNTRC laminated beams with positive and negative Poisson’s ratios. Int. J. Struct. Stab. Dyn. 20, 2043007 (2020)

    MathSciNet  Google Scholar 

  54. Wattanasakulpong, N., Ungbhakorn, V.: Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Comput. Mat. Sci. 71, 201–208 (2013)

    Google Scholar 

  55. Mayandi, K., Jeyaraj, P.: Bending, buckling and free vibration characteristics of FG-CNT-reinforced polymer composite beam under non-uniform thermal load. Proc. Inst. Mech. Eng. Part L J. Mater. Design Appl. 229(1), 13–28 (2015)

    Google Scholar 

  56. Lin, F., Xiang, Y.: Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories. Appl. Math. Model. 38(15–16), 3741–3754 (2014)

    MathSciNet  MATH  Google Scholar 

  57. Tagrara, S., Benachour, A., Bouiadjra, M.B., Tounsi, A.: On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams. Steel Compos. Struct. 19(5), 1259–1277 (2015)

    Google Scholar 

  58. Salami, S.J.: Extended high order sandwich panel theory for bending analysis of sandwich beams with carbon nanotube reinforced face sheets. Phys. E Low-Dimens. Syst. Nanostruct. 76, 187–197 (2016)

    ADS  Google Scholar 

  59. Salami, S.J.: Free vibration analysis of sandwich beams with carbon nanotube reinforced face sheets based on extended high-order sandwich panel theory. J. Sandwich Struct. Mater. 20(2), 219–248 (2018)

    Google Scholar 

  60. Pouresmaeeli, S., Fazelzadeh, S.: Uncertain buckling and sensitivity analysis of functionally graded carbon nanotube-reinforced composite beam. Int. J. Appl. Mech. 9(05), 1750071 (2017)

    Google Scholar 

  61. Mohammadimehr, M., Alimirzaei, S.: Buckling and free vibration analysis of tapered FG-CNTRC micro Reddy beam under longitudinal magnetic field using FEM. Smart Struct. Syst. 19(3), 309–322 (2017)

    Google Scholar 

  62. Alibeigloo, A., Liew, K.: Elasticity solution of free vibration and bending behavior of functionally graded carbon nanotube-reinforced composite beam with thin piezoelectric layers using differential quadrature method. Int. J. Appl. Mech. 7(01), 1550002 (2015)

    Google Scholar 

  63. Ebrahimi, F., Farazmandnia, N.: Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory. Mech. Adv. Mater. Struct. 24(10), 820–829 (2017)

    Google Scholar 

  64. Khelifa, Z., Hadji, L., Daouadji, T.H., Mohamed, B.: Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation. Struct. Eng. Mech. 67(2), 125–130 (2018)

    Google Scholar 

  65. Mohammadimehr, M., Mohammadi-Dehabadi, A., Akhavan Alavi, S.M., Alambeigi, K., Bamdad, M., Yazdani, R., Hanifehlou, S.: Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite. Steel Compos. Struct. 29(3), 405–422 (2018)

    Google Scholar 

  66. Daikh, A.A., Drai, A., Houari, M.S.A., Eltaher, M.A.: Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes. Steel Compos. Struct. 36(6), 643–656 (2020)

    Google Scholar 

  67. Karami, B., Janghorban, M., Shahsavari, D., Dimitri, R., Tornabene, F.: Nonlocal buckling analysis of composite curved beams reinforced with functionally graded carbon nanotubes. Molecules 24(15), 2750 (2019)

    Google Scholar 

  68. Hadji, L., Avcar, M., Civalek, Ö.: Free vibration of carbon nanotube–reinforced composite beams under the various boundary conditions. In: Advanced Composite Materials and Structures, CRC Press, pp. 87–108

  69. Karamanli, A., Vo, T.P.: Finite element model for carbon nanotube-reinforced and graphene nanoplatelet-reinforced composite beams. Compos. Struct. 264, 113739 (2021)

    Google Scholar 

  70. Garg, A., Chalak, H.D., Zenkour, A.M., Belarbi, M.O., Sahoo, R.: Bending and free vibration analysis of symmetric and unsymmetric functionally graded CNT reinforced sandwich beams containing softcore. Thin-Walled Struct. 170, 108626 (2022)

    Google Scholar 

  71. Sharma, R., Jadon, V., Singh, B.: A review on the finite element methods for heat conduction in functionally graded materials. J. Inst. Eng. (India) Series C. 96(1), 73–81 (2015)

    Google Scholar 

  72. Chareonsuk, J., Vessakosol, P.: Numerical solutions for functionally graded solids under thermal and mechanical loads using a high-order control volume finite element method. Appl. Thermal Eng. 31(2–3), 213–227 (2011)

    Google Scholar 

  73. Alibert, J.J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    MathSciNet  MATH  Google Scholar 

  74. Phung-Van, P., Lieu, Q.X., Nguyen-Xuan, H., Abdel Wahab, M.: Size-dependent isogeometric analysis of functionally graded carbon nanotube-reinforced composite nanoplates. Compos. Struct. 166, 120–135 (2017)

    Google Scholar 

  75. Thanh, C.L., Phung-Van, P., Thai, C.H., Nguyen-Xuan, H., Abdel Wahab, M.: Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory. Compos. Struct. 184, 633–649 (2018)

    Google Scholar 

  76. De Angelo, M., Placidi, L., Nejadsadeghi, N., Misra, A.: Non-standard Timoshenko beam model for chiral metamaterial: identification of stiffness parameters. Mech. Res. Commun. 103, 103462 (2020)

    Google Scholar 

  77. Giorgio, I.: A discrete formulation of Kirchhoff rods in large-motion dynamics. Math. Mech. Solids. 25(5), 1081–1100 (2020)

    MathSciNet  MATH  Google Scholar 

  78. Schulte, J., Dittmann, M., Eugster, S.R., Hesch, S., Reinicke, T., dell’Isola, F., Hesch, C.: Isogeometric analysis of fiber reinforced composites using Kirchhoff–Love shell elements. Comput. Methods Appl. Mech. Eng. 362, 112845 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  79. Turco, E., Barchiesi, E., Giorgio, I., dell’Isola, F.: A Lagrangian Hencky-type non-linear model suitable for metamaterials design of shearable and extensible slender deformable bodies alternative to Timoshenko theory. Int. J. Non-Linear Mech. 123, 103481 (2020)

    ADS  Google Scholar 

  80. Zghal, S., Ataoui, D., Dammak, F.: Static bending analysis of beams made of functionally graded porous materials. Mech. Based Design Struct. Mach. (2020). https://doi.org/10.1080/15397734.2020.1748053

    Article  Google Scholar 

  81. Garg, A., Chalak, H.D., Li, L., Belarbi, M.O., Sahoo, R., Mukhopadhyay, T.: Vibration and buckling analyses of sandwich plates containing functionally graded metal foam core. Acta Mech. Solida Sin. 35, 1–16 (2022)

    Google Scholar 

  82. Belarbi, M.O., Garg, A., Houari, M.S.A., Hirane, H., Tounsi, A., Chalak, H.D.: A three-unknown refined shear beam element model for buckling analysis of functionally graded curved sandwich beams. Eng. Comput. (2021). https://doi.org/10.1007/s00366-021-01452-1

    Article  Google Scholar 

  83. Civalek, Ö., Avcar, M.: Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Eng. Comput. 38(1), 489–521 (2022)

    Google Scholar 

  84. Belarbi, M.O., Li, L., Ahmed Houari, M.S., Garg, A., Chalak, H.D., Dimitri, R., Tornabene, F.: Nonlocal vibration of functionally graded nanoplates using a layerwise theory. Math. Mech. Solids. (2022). https://doi.org/10.1177/10812865221078571

    Article  MathSciNet  Google Scholar 

  85. Ciallella, A., Giorgio, I., Eugster, S.R., Rizzi, N.L., dell’Isola, F.: Generalized beam model for the analysis of wave propagation with a symmetric pattern of deformation in planar pantographic sheets. Wave Motion 113, 102986 (2022)

    MathSciNet  MATH  Google Scholar 

  86. Vinh, P.V., Belarbi, M.O., Tounsi, A.: Wave propagation analysis of functionally graded nanoplates using nonlocal higher-order shear deformation theory with spatial variation of the nonlocal parameters. Waves Random Complex Media. 1–21 (2022)

  87. Alizada, A.N., Sofiyev, A.H.: On the mechanics of deformation and stability of the beam with a nanocoating. J. Reinf. Plast. Compos. 30, 1583–1595 (2011)

    ADS  Google Scholar 

  88. Sofiyev, A.H.: On the vibration and stability behaviors of heterogeneous- CNTRC-truncated conical shells under axial load in the context of FSDT. Thin-Wall. Struct. 151, 106747 (2020)

    Google Scholar 

  89. Zhang, J., Chen, S., Zheng, W.: Dynamic buckling analysis of functionally graded material cylindrical shells under thermal shock. Continuum Mech. Thermodyn. 32, 1095–1108 (2020)

    ADS  MathSciNet  Google Scholar 

  90. Kiarasi, F., Babaei, M., Dimitri, R., Tornabene, F.: Hygrothermal modeling of the buckling behavior of sandwich plates with nanocomposite face sheets resting on a Pasternak foundation. Continuum Mech. Thermodyn. 33, 911–932 (2021)

    ADS  MathSciNet  Google Scholar 

  91. Sofiyev, A.H., Avey, M., Kuruoglu, N.: An approach to the solution of nonlinear forced vibration problem of structural systems reinforced with advanced materials in the presence of viscous damping. Mech. Syst. Sig. Process. 161, 107991 (2021)

    Google Scholar 

  92. Phi, B.G., Hieu, D.V., Sedighi, H.M., Sofiyev, A.H.: Size-dependent nonlinear vibration of functionally graded composite micro-beams reinforced by carbon nanotubes with piezoelectric layers in thermal environments. Acta Mech. 233, 2249–2270 (2022)

    MathSciNet  MATH  Google Scholar 

  93. Avey, M., Fantuzzi, N., Sofiyev, A.H.: Vibration of laminated functionally graded nanocomposite structures considering the transverse shear stresses and rotary inertia. Compos. Struct. 301, 116209 (2022)

    Google Scholar 

  94. Sofiyev, A.H. Kadioglu, F., Khalilov, I. A., Sedighi, H. M., Vergul, T., Yenialp, R.: On the torsional buckling moment of cylindrical shells consisting of functionally graded materials resting on the Pasternak-type soil. In: Socar Proceedings Trends and Prospects in the Oil & Gas Industry. Special Issue, vol. 1, pp. 016–022 (2022)

  95. Ke, L.L., Yang, J., Kitipornchai, S.: Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Compos. Struct. 92(3), 676–683 (2010)

    Google Scholar 

  96. Han, Y., Elliott, J.: Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput. Mat. Sci. 39(2), 315–323 (2007)

    Google Scholar 

  97. Shen, H.S., Xiang, Y.: Nonlinear analysis of nanotube-reinforced composite beams resting on elastic foundations in thermal environments. Eng. Struct. 56, 698–708 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Tornabene.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belarbi, MO., Salami, S.J., Garg, A. et al. Mechanical behavior analysis of FG-CNT-reinforced polymer composite beams via a hyperbolic shear deformation theory. Continuum Mech. Thermodyn. 35, 497–520 (2023). https://doi.org/10.1007/s00161-023-01191-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-023-01191-2

Keywords

Navigation