Skip to main content
Log in

Unsteady ballistic heat transport in a 1D harmonic crystal due to a source on an isotopic defect

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In the paper we apply asymptotic technique based on the method of stationary phase and obtain the approximate analytical description of thermal motions caused by a source on an isotopic defect of an arbitrary mass in a 1D harmonic crystal. It is well known that localized oscillation is possible in this system in the case of a light defect. We consider the unsteady heat propagation and obtain formulae, which provide continualization (everywhere excepting a neighbourhood of a defect) and asymptotic uncoupling of the thermal motion into the sum of the slow and fast components. The slow motion is related to ballistic heat transport, whereas the fast motion is energy oscillation related to transformation of the kinetic energy into the potential one and in the opposite direction. To obtain the propagating component of the fast and slow motions we estimate the exact solution in the integral form at a moving point of observation. We demonstrate that the propagating parts of the slow and the fast motions are “anti-localized” near the defect. The physical meaning of the anti-localization is a tendency for the unsteady propagating wave-field to avoid a neighbourhood of a defect. The effect of anti-localization increases with the absolute value of the difference between the alternated mass and the mass of a regular particle, and, therefore, more energy concentrates just behind the leading wave-front of the propagating component. The obtained solution is valid in a wide range of a spatial co-ordinate (i.e. a particle number), everywhere excepting a neighbourhood of the leading wave-front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. With respect to the mass of a regular particle.

  2. Since the equations of motions involve only second order time derivatives.

  3. This formula follows from the Erdélyi lemma for \(\alpha =1\), \(\beta =2\) (see Appendix B), see, e.g., [59, 60].

  4. In Sect. 7.3 we discuss the contribution \(I_0^\textrm{stop}(\varOmega _*)\) in more details.

  5. The specific form of this boundary conditions is not very important in our calculations, since we take large enough N.

  6. See formulae (A36)–(A39) in [41].

  7. Thermal motion corresponds to the propagation of the kinetic temperature.

References

  1. Hamilton, W.R.: Propagation of motion in elastic medium—discrete molecules (1839). In: A. Conway, A. McConnell (eds.) The Mathematical Papers of Sir William Rowan Hamilton, Vol. II: Dynamics, pp. 527–575. Cambridge at the Univesity Press (1940)

  2. Havelock, T.H.: On the instantaneous propagation of disturbance in a dispersive medium. Phil. Mag. 19(109), 160–168 (1910). https://doi.org/10.1080/14786440108636785

    Article  MATH  Google Scholar 

  3. Schrödinger, E.: Zur Dynamik elastisch gekoppelter Punktsysteme. Ann. Phys. 349(14), 916–934 (1914). https://doi.org/10.1002/andp.19143491405

    Article  MATH  Google Scholar 

  4. Mühlich, U., Abali, B.E., dell’Isola, F.: Commented translation of Erwin Schrödinger’s paper ‘On the dynamics of elastically coupled point systems’ (Zur Dynamik elastisch gekoppelter Punktsysteme). Math. Mech. Solids 26(1), 133–147 (2020). https://doi.org/10.1177/1081286520942955

    Article  MATH  Google Scholar 

  5. Klein, G., Prigogine, I.: Sur la mecanique statistique des phenomenes irreversibles III. Physica 19(1–12), 1053–1071 (1953). https://doi.org/10.1016/S0031-8914(53)80120-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Hemmer, P.C.: Dynamic and stochastic types of motion in the linear chain. Ph.D. thesis, Norges tekniske høgskole, Trondheim (1959)

  7. Rieder, Z., Lebowitz, J.L., Lieb, E.: Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys. 8(5), 1073–1078 (1967). https://doi.org/10.1063/1.1705319

    Article  ADS  Google Scholar 

  8. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377(1), 1–80 (2003). https://doi.org/10.1016/S0370-1573(02)00558-6

    Article  ADS  MathSciNet  Google Scholar 

  9. Chang, C.W., Okawa, D., Garcia, H., Majumdar, A., Zettl, A.: Breakdown of Fourier’s law in nanotube thermal conductors. Phys. Rev. Lett. 101(7), 075,903 (2008). https://doi.org/10.1103/PhysRevLett.101.075903

  10. Hsiao, T.K., Huang, B.W., Chang, H.K., Liou, S.C., Chu, M.W., Lee, S.C., Chang, C.W.: Micron-scale ballistic thermal conduction and suppressed thermal conductivity in heterogeneously interfaced nanowires. Phys. Rev. B 91(3), 035,406 (2015). https://doi.org/10.1103/PhysRevB.91.035406

  11. Hsiao, T.K., Chang, H.K., Liou, S.C., Chu, M.W., Lee, S.C., Chang, C.W.: Observation of room-temperature ballistic thermal conduction persisting over 8.3 \(\mu \)m in SiGe nanowires. Nat. Nanotechnol. 8(7), 534–538 (2013). https://doi.org/10.1038/nnano.2013.121

  12. Bae, M.H., Li, Z., Aksamija, Z., Martin, P.N., Xiong, F., Ong, Z.Y., Knezevic, I., Pop, E.: Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat. Commun. 4(1), 1734 (2013). https://doi.org/10.1038/ncomms2755

    Article  ADS  Google Scholar 

  13. Saito, R., Mizuno, M., Dresselhaus, M.S.: Ballistic and diffusive thermal conductivity of graphene. Phys. Rev. Appl. 9(2), 024,017 (2018). https://doi.org/10.1103/PhysRevApplied.9.024017

  14. Xu, X., Pereira, L.F.C., Wang, Yu., Wu, J., Zhang, K., Zhao, X., Bae, S., Tinh, B., Xie, R., Thong, J.T.L., Hong, B.H., Loh, K.P., Donadio, D., Li, B., Özyilmaz, B.: Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5(1), 3689 (2014). https://doi.org/10.1038/ncomms4689

    Article  ADS  Google Scholar 

  15. Krivtsov, A.M.: Energy oscillations in a one-dimensional crystal. Dokl. Phys. 59(9), 427–430 (2014). https://doi.org/10.1134/S1028335814090080

    Article  Google Scholar 

  16. Krivtsov, A.M.: Heat transfer in infinite harmonic one-dimensional crystals. Dokl. Phys. 60(9), 407–411 (2015). https://doi.org/10.1134/S1028335815090062

    Article  ADS  Google Scholar 

  17. Kuzkin, V.A., Krivtsov, A.M.: Fast and slow thermal processes in harmonic scalar lattices. J. Phys. Conden. Matter 29(50), 505,401 (2017). https://doi.org/10.1088/1361-648X/aa98eb

  18. Krivtsov, A.M.: The ballistic heat equation for a one-dimensional harmonic crystal. In: H. Altenbach, et al. (eds.) Dynamical Processes in Generalized Continua and Structures, Advanced Structured Materials 103, pp. 345–358. Springer (2019). https://doi.org/10.1007/978-3-030-11665-1_19

  19. Gavrilov, S.N., Krivtsov, A.M., Tsvetkov, D.V.: Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply. Continuum Mech. Thermodyn. 31, 255–272 (2019). https://doi.org/10.1007/s00161-018-0681-3

    Article  ADS  MathSciNet  Google Scholar 

  20. Gavrilov, S.N., Krivtsov, A.M.: Thermal equilibration in a one-dimensional damped harmonic crystal. Phys. Rev. E 100(2), 022,117 (2019). https://doi.org/10.1103/PhysRevE.100.022117

  21. Kuzkin, V.A.: Thermal equilibration in infinite harmonic crystals. Continuum Mech. Thermodyn. 31(5), 1401–1423 (2019). https://doi.org/10.1007/s00161-019-00758-2

    Article  ADS  MathSciNet  Google Scholar 

  22. Sokolov, A.A., Müller, W.H., Porubov, A.V., Gavrilov, S.N.: Heat conduction in 1D harmonic crystal: Discrete and continuum approaches. Int. J. Heat Mass Transfer 176, 121,442 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121442

  23. Kuzkin, V.A.: Unsteady ballistic heat transport in harmonic crystals with polyatomic unit cell. Continuum Mech. Thermodyn. 31(6), 1573–1599 (2019). https://doi.org/10.1007/s00161-019-00802-1

    Article  ADS  MathSciNet  Google Scholar 

  24. Gavrilov, S.N., Krivtsov, A.M.: Steady-state ballistic thermal transport associated with transversal motions in a damped graphene lattice subjected to a point heat source. Continuum Mech. Thermodyn. 34(1), 297–319 (2022). https://doi.org/10.1007/s00161-021-01059-3

    Article  ADS  MathSciNet  Google Scholar 

  25. Panchenko, A.Yu., Kuzkin, V.A., Berinskii, I.E.: Unsteady ballistic heat transport in two-dimensional harmonic graphene lattice. J. Phys. Conden. Matter 34(16), 165,402 (2022). https://doi.org/10.1088/1361-648X/ac5197

  26. Gavrilov, S.N.: Discrete and continuum fundamental solutions describing heat conduction in a 1D harmonic crystal: discrete-to-continuum limit and slow-and-fast motions decoupling. Int. J. Heat Mass Transfer 194, 123,019 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123019

  27. Slepyan, L.I.: Nestatsionarnye uprugie volny [Non-stationary elastic waves]. Sudostroenie [Shipbuilding], Leningrad (1972). In Russian

  28. Montroll, E.W., Potts, R.B.: Effect of defects on lattice vibrations. Phys. Rev. 100(2), 525–543 (1955). https://doi.org/10.1103/PhysRev.100.525

  29. Indeitsev, D.A., Kuznetsov, N.G., Motygin, O.V., Mochalova, Yu.A.: Lokalizatsia lineynykh voln [Localization of linear waves]. Izdatelstvo Sankt-Peterburgskogo universiteta [St. Petersburg University publishing house], St. Petersburg (2007). (in Russian)

  30. Andrianov, I.V., Danishevs’kyy, V.V., Kalamkarov, A.L.: Vibration localization in one-dimensional linear and nonlinear lattices: discrete and continuum models. Nonlinear Dyn. 72, 37–48 (2012). https://doi.org/10.1007/s11071-012-0688-4

    Article  MathSciNet  Google Scholar 

  31. Gavrilov, S.N., Shishkina, E.V., Mochalova, Y.A.: Non-stationary localized oscillations of an infinite string, with time-varying tension, lying on the Winkler foundation with a point elastic inhomogeneity. Nonlinear Dyn. 95(4), 2995–3004 (2019). https://doi.org/10.1007/s11071-018-04735-3

    Article  MATH  Google Scholar 

  32. Mishuris, G.S., Movchan, A.B., Slepyan, L.I.: Localized waves at a line of dynamic inhomogeneities: General considerations and some specific problems. J. Mech. Phys. Solids 138, 103,901 (2020). https://doi.org/10.1016/j.jmps.2020.103901

  33. Teramoto, E., Takeno, S.: Time dependent problems of the localized lattice vibration. Progress Theoret. Phys. 24(6), 1349–1368 (1960). https://doi.org/10.1143/PTP.24.1349

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Kashiwamura, S.: Statistical dynamical behaviors of a one-dimensional lattice with an isotopic impurity. Progress Theoret. Phys. 27(3), 571–588 (1962). https://doi.org/10.1143/PTP.27.571

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Magalinskii, V.B.: Dynamical model in the theory of the Brownian motion. Soviet Phys. JETP-USSR 9(6), 1381–1382 (1959)

    MathSciNet  Google Scholar 

  36. Müller, I.: Durch eine äußere Kraft erzwungene Bewegung der mittleren Masse eineslinearen Systems von \({N}\) durch federn verbundenen Massen [The forced motion of the sentral mass in a linear mass-spring chain of n masses under the action of an external force]. Diploma thesis, Technical University Aachen (1962)

  37. Müller, I., Weiss, W.: Thermodynamics of irreversible processes - past and present. Eur. Phys. J. 37(2), 139–236 (2012). https://doi.org/10.1140/epjh/e2012-20029-1

    Article  Google Scholar 

  38. Turner, R.E.: Motion of a heavy particle in a one dimensional chain. Physica 26(4), 269–273 (1960). https://doi.org/10.1016/0031-8914(60)90022-7

    Article  ADS  MathSciNet  Google Scholar 

  39. Rubin, R.J.: Statistical dynamics of simple cubic lattices. Model for the study of Brownian motion. J. Math. Phys. 1(4), 309–318 (1960). https://doi.org/10.1063/1.1703664

    Article  ADS  MathSciNet  Google Scholar 

  40. Rubin, R.J.: Statistical dynamics of simple cubic lattices. Model for the study of Brownian motion. II. J. Math. Phys. 2(3), 373–386 (1961). https://doi.org/10.1063/1.1703723

    Article  ADS  MathSciNet  Google Scholar 

  41. Rubin, R.J.: Momentum autocorrelation functions and energy transport in harmonic crystals containing isotopic defects. Phys. Rev. 131(3), 964–989 (1963). https://doi.org/10.1103/PhysRev.131.964

    Article  ADS  Google Scholar 

  42. Takizawa, E.I., Kobayasi, K.: Localized vibrations in a system of coupled harmonic oscillators. Chin. J. Phys. 5(1), 11–17 (1968)

    Google Scholar 

  43. Takizawa, E.I., Kobayasi, K.: On the stochastic types of motion in a system oflinear harmonic oscillators. Chin. J. Phys. 6(1), 39–66 (1968)

    Google Scholar 

  44. Lee, M.H., Florencio, J., Hong, J.: Dynamic equivalence of a two-dimensional quantum electron gas and a classical harmonic oscillator chain with an impurity mass. J. Phys. A 22(8), L331–L335 (1989). https://doi.org/10.1088/0305-4470/22/8/005

    Article  ADS  Google Scholar 

  45. Yu, M.B.: Momentum autocorrelation function of an impurity in a classical oscillator chain with alternating masses—I. General theory. Physica A 398, 252–263 (2014). https://doi.org/10.1016/j.physa.2013.11.023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Yu, M.B.: Momentum autocorrelation function of an impurity in a classical oscillator chain with alternating masses II. Illustrations. Physica A 438, 469–486 (2015). https://doi.org/10.1016/j.physa.2015.06.014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Yu, M.B.: Momentum autocorrelation function of an impurity in a classical oscillator chain with alternating masses III. Some limiting cases. Physica A 447, 411–421 (2016). https://doi.org/10.1016/j.physa.2015.12.034

    Article  ADS  MATH  Google Scholar 

  48. Yu, M.B.: A monatomic chain with an impurity in mass and Hooke constant. Eur. Phys. J. B 92, 272 (2019). https://doi.org/10.1140/epjb/e2019-100383-1

    Article  ADS  MathSciNet  Google Scholar 

  49. Kannan, V.: Heat conduction in low dimensional lattice systems. Ph.D. thesis, Rutgers the State University of New Jersey—New Brunswick (2013)

  50. Paul, J., Gendelman, O.V.: Kapitza resistance in basic chain models with isolated defects. Phys. Lett. A 384(10), 126220 (2020). https://doi.org/10.1016/j.physleta.2019.126220

    Article  MathSciNet  Google Scholar 

  51. Gendelman, O.V., Paul, J.: Kapitza thermal resistance in linear and nonlinear chain models: Isotopic defect. Phys. Rev. E 103(5), 052113 (2021). https://doi.org/10.1103/PhysRevE.103.052113

    Article  ADS  MathSciNet  Google Scholar 

  52. Plyukhin, A.V.: Non-Clausius heat transfer: the example of harmonic chain with an impurity. J. Stat. Mech. Theory Exp. 2020(6), 063212 (2020). https://doi.org/10.1088/1742-5468/ab837c

    Article  MathSciNet  MATH  Google Scholar 

  53. Chen, S., Wu, Q., Mishra, C., Kang, J., Zhang, H., Cho, K., Cai, W., Balandin, A.A., Ruoff, R.S.: Thermal conductivity of isotopically modified graphene. Nat. Mater. 11(3), 203–207 (2012). https://doi.org/10.1038/nmat3207

    Article  ADS  Google Scholar 

  54. Vladimirov, V.S.: Equations of Mathematical Physics. Marcel Dekker, New York (1971)

    MATH  Google Scholar 

  55. Slepyan, L.I., Tsareva, O.V.: Energy flux for zero group velocity of the carrier wave. Soviet Phys. Doklady 32, 522–526 (1987)

    ADS  MATH  Google Scholar 

  56. Ayzenberg-Stepanenko, M.V., Slepyan, L.I.: Resonant-frequency primitive waveforms and star waves in lattices. J. Sound Vib. 313(3), 812–821 (2008). https://doi.org/10.1016/j.jsv.2007.11.047

    Article  ADS  Google Scholar 

  57. Abdukadirov, S.A., Ayzenberg-Stepanenko, M.V., Osharovich, G.G.: Resonant waves and localization phenomena in lattices. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 377(2156), 20190110 (2019). https://doi.org/10.1098/rsta.2019.0110

  58. Erdélyi, A.: Asymptotic Expansions. Dover Publications, New York (1956)

    MATH  Google Scholar 

  59. Fedoryuk, M.V.: Metod perevala [The Saddle-Point Method]. Nauka [Science], Moscow (1977). In Russian

  60. Temme, N.M.: Asymptotic Methods for Integrals (2014). https://doi.org/10.1142/9195

    Article  Google Scholar 

  61. van der Corput, J.G.: On the method of critical points. i. K. Ned. Akad. Wet. Indag. Math. 10, 201–209 (1948)

  62. Gavrilov, S.: Non-stationary problems in dynamics of a string on an elastic foundation subjected to a moving load. J. Sound Vib. 222(3), 345–361 (1999). https://doi.org/10.1006/jsvi.1998.2051

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Olver, F.: Asymptotics and Special Functions. A.K. Peters/CRC Press, New York (1997). https://doi.org/10.1201/9781439864548

  64. Kaplunov, Y.D.: Torsional vibrations of a rod on a deformable base under a moving inertial load. Mech. Solids 21(6), 167–170 (1986)

    Google Scholar 

  65. Allen, P.B., Nghiem, N.A.: Heat pulse propagation and nonlocal phonon heat transport in one-dimensional harmonic chains. Phys. Rev. B 105(17), 174302 (2022). https://doi.org/10.1103/PhysRevB.105.174302

    Article  ADS  Google Scholar 

  66. Gavrilov, S.N., Krivtsov, A.M.: Steady-state kinetic temperature distribution in a two-dimensional square harmonic scalar lattice lying in a viscous environment and subjected to a point heat source. Continuum Mech. Thermodyn. 32(1), 41–61 (2020). https://doi.org/10.1007/s00161-019-00782-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to A.M. Krivtsov, O.V. Gendelman, A. Politi, Yu.A. Mochalova, V.A. Kuzkin, A.A. Sokolov, D.A. Indeitsev, A.P. Kiselev, S.D. Liazhkov, D.V. Korikov, N.G. Shvarev for useful and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge N. Gavrilov.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Prof. D.A. Indeitsev—Deceased.

This work is supported by Russian Science Support Foundation (project 21-11-00378).

Appendices

Non-dimensionalization

The equations of motion for the system under consideration are

$$\begin{aligned} \tilde{m}_n\frac{\mathrm d^2 {\tilde{u}}_n}{\mathrm d\tilde{t}^2} -\tilde{C}(\tilde{u}_{n+1}-2\tilde{u}_n+\tilde{u}_{n-1})= \delta _n \tilde{p}\big (\tilde{t}\big ). \end{aligned}$$
(A.1)

Here \(n \in \mathbb {Z}\), \(\tilde{t}\) is the time, \(\tilde{u}_n(\tilde{t})\) is the displacement of the particle with a number n, \(\tilde{m}_n\) is the mass of a particle with number n:

$$\begin{aligned} \tilde{m}_n=\tilde{M}+\delta _n(\tilde{m}-\tilde{M}), \end{aligned}$$
(A.2)

\(\tilde{C}\) is the bond stiffness. The dimensionless equations of motion (3.1) can be obtained by introducing the following dimensionless quantities:

$$\begin{aligned} u_n=\frac{\tilde{u}_n}{\tilde{A}};\quad t=\omega \tilde{t};\quad p=\frac{\tilde{p}}{\tilde{C}\tilde{A}},\quad m=m_0=\frac{\tilde{m}}{\tilde{M}}. \end{aligned}$$
(A.3)

Here \(\tilde{A}\) is the lattice constant (the distance between neighbouring particles); \(\omega {\mathop {=}\limits ^{\text{ def }}}\sqrt{{\tilde{C}}/{\tilde{M}}}\).

The Erdélyi lemma

Theorem 1

Let \(a>0,\ \alpha \ge 1,\ \beta >0\), \(f(\varOmega )\in C^\infty \), \(f^{(n)}(a)=0\ \forall n.\) Then

$$\begin{aligned}{} & {} \int _0^a\varOmega ^{\beta -1}f(\varOmega )\,\mathrm e^{\mathrm it\varOmega ^\alpha }\,\mathrm d\varOmega \sim \sum _{k=0}^\infty c_k t^{-\frac{k+\beta }{\alpha }},\quad t\rightarrow \infty ; \end{aligned}$$
(B.1)
$$\begin{aligned}{} & {} c_k=\frac{f^{(k)}(0)}{k!\alpha }\, \varGamma \left( \frac{k+\beta }{\alpha }\right) \mathrm e^{\frac{\mathrm i\pi (k+\beta )}{2\alpha }}. \end{aligned}$$
(B.2)

The proof can be found in [58, 59].

In Sect. 7 we sometimes apply Erdélyi lemma to integrals, where \(\beta =1\), \(0<\alpha <1\). The corresponding asymptotics can be obtained by taking \(\varOmega ^\alpha \) as the new integration variable, and applying the Erdélyi lemma to the obtained integral.

The trapped energy ratio

According to Eq. (3.17) the initial kinetic energy, as well as the total energy of the chain for all t, is \(\mathcal E\). On the other hand, according to (3.14), (3.19)

$$\begin{aligned} \langle K_n\rangle = \frac{1}{2}{\mathcal E}\mathcal T_n. \end{aligned}$$
(C.1)

One has

$$\begin{aligned} \frac{\sum _{n=-\infty }^{\infty }\langle K_n(t)\rangle }{\mathcal E} = \frac{\sum _{n=-\infty }^{\infty }\mathcal T_n(t)}{2}. \end{aligned}$$
(C.2)

Considering the energy trapped near the defect as \(t\rightarrow \infty \), we substitute into Eq. (C.2) \(\mathcal T_n=\mathcal T_n^\textrm{stop}\simeq 2mm_n({v}_n^\textrm{stop})^2\):

$$\begin{aligned} \frac{\sum _{n=-\infty }^{\infty }\langle K_n(t)\rangle }{\mathcal E} =m\sum _{n=-\infty }^{\infty } m_n({v}_n^\textrm{stop})^2=m^2(v_0^\textrm{stop})^2+2m\sum _{n=1}^\infty ({v}_n^\textrm{stop})^2. \end{aligned}$$
(C.3)

Using Eq. (10.9) to calculate the right-hand side of (C.3) at \(t=\frac{\pi k}{\varOmega _0}\), \(k\in \mathbb Z\), \(k\rightarrow \infty \) (when the trapped kinetic energy equals the trapped total energy), we obtain the ratio R of the trapped total energy to the total energy of the chain. Due to (10.9) on has

$$\begin{aligned} ({v}^\textrm{stop}_n)^2\Big |_{t=\frac{\pi k}{\varOmega _0}} = \frac{4(1-m)^2m^{2(|n|-1)}}{(2-m)^{2(|n|+1)}} . \end{aligned}$$
(C.4)

Calculating the sum of the geometric series in the right-hand side of Eq. (C.3), one, finally, gets

$$\begin{aligned} R=\frac{4(1-m)^2}{m(2-m)^2}\left( m +\frac{2q}{1-q}\right) =1-\frac{m}{2-m}. \end{aligned}$$
(C.5)

Here

$$\begin{aligned} q=\frac{m^2}{(2-m)^2} \end{aligned}$$
(C.6)

is a common ratio for the geometric series.

The plot of the trapped total energy R versus m is presented in Fig. 7. For \(m\rightarrow +0\) all energy is trapped near the defect, for \(m\rightarrow 1-0\) all energy is radiated away from the defect.

Formula (C.5) was previously obtained in [41].

Fig. 7
figure 7

The trapped total energy ratio R versus m

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishkina, E.V., Gavrilov, S.N. Unsteady ballistic heat transport in a 1D harmonic crystal due to a source on an isotopic defect. Continuum Mech. Thermodyn. 35, 431–456 (2023). https://doi.org/10.1007/s00161-023-01188-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-023-01188-x

Keywords

Navigation