Skip to main content
Log in

Unsteady thermal transport in an instantly heated semi-infinite free end Hooke chain

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We consider unsteady ballistic heat transport in a semi-infinite Hooke chain with free end and arbitrary initial temperature profile. An analytical description of the evolution of the kinetic temperature is proposed in both discrete (exact) and continuum (approximate) formulations. By comparison of the discrete and continuum descriptions of kinetic temperature field, we reveal some restrictions to the latter. Specifically, the far-field kinetic temperature is well described by the continuum solution, which, however, deviates near and at the free end (boundary). We show analytically that, after thermal wave reflects from the boundary, the discrete solution for the kinetic temperature undergoes a jump near the free end. A comparison of the descriptions of heat propagation in the semi-infinite and infinite Hooke chains is presented. Results of the current paper are expected to provide insight into non-stationary heat transport in the semi-infinite lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. i.e., changing in dependence of the particle number.

  2. See also English translation of the Schrödinger article [23].

  3. This is the monoatomic harmonic chain of identical particles, connected by the linear identical springs, see [24].

  4. Ends of chain are connected with the fixed points by linear stiffness springs.

  5. Definition of the Hooke chain is given in Sect. 1 and in [24].

  6. The statement of problem corresponds to experimental heating of the crystal by the ultrashort laser pulse. Since the expression for heat flux in the Hooke chain contains covariances of displacements and velocities (see, e.g., [3, 34]), initial zero field of initial displacements means zero initial heat fluxes.

  7. We determine the kinetic temperature by its statistical definition (see, e.g., chapter 3, Sect. 29 in [35]). Unambiguous definition of the temperature for systems far from equilibrium is still unresolved fundamental problem (see, e.g., [36, 37]). In this paper, we calculate the kinetic temperature as average of kinetic energy over realizations, because it has simple physical meaning. Discussion of the ergodicity remains out of frameworks of this study.

  8. A macroscale can be interpreted as a scale of the order of the length of chain.

  9. Here, evenness property of the Dirac delta function is used.

  10. The type of the initial temperature perturbation contradicts with the assumption, made in Sect. 3.1. However, as it is shown below, the continuum solution has the same physical meaning, which is characteristic for one at arbitrary initial temperature profile.

  11. Simulations are performed for the chain with 500 particles.

  12. Random numbers \(\rho _n\) are uniformly distributed in the segment \([-\sqrt{3}; \sqrt{3}]\), which satisfies condition (4).

  13. As in the case of rectangular perturbation, the continuum solution decays also as 1/t.

  14. i.e., the function \(T(t)\Big \vert _0\) at width of the initial thermal perturbation \(L+\Delta L\) is equal to \(T\left( \frac{L+\Delta L}{L}t\right) \Big \vert _0\) at the width L.

  15. Therefore, before reflection from the boundary, the continuum solution for the kinetic temperature in the semi-infinite chain obeys solution (40).

References

  1. Rickert, W., Vilchevskaya, E.N., Müller, W.H.: A note on Couette flow of micropolar fluids according to Eringen’s theory. Math. Mech. Complex Syst. 7, 25–50 (2019). https://doi.org/10.2140/MEMOCS.2019.7.25

    Article  MathSciNet  MATH  Google Scholar 

  2. Rieder, Z., Lebowitz, J.L., Lieb, E.: Properties of a harmonic crystal in a stationary nonequilibrium state. J. Math. Phys. 8(5), 1073–1078 (1967). https://doi.org/10.1063/1.1705319

    Article  ADS  Google Scholar 

  3. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377(1), 1–80 (2003). https://doi.org/10.1016/S0370-1573(02)00558-6

    Article  ADS  MathSciNet  Google Scholar 

  4. Dhar, A.: Heat transport in low-dimensional systems. Adv. Phys. 57(5), 457–537 (2008). https://doi.org/10.1080/00018730802538522

    Article  ADS  Google Scholar 

  5. Chang, C.W.: Experimental probing of non-Fourier thermal conductors. In: Lepri, S. (ed.) Thermal Transport in Low Dimensions From Statistical Physics to Nanoscale Heat Transfer, vol. 921, pp. 305–338. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  6. Huberman, S., Duncan, R.A., Chen, K., Song, B., Chiloyan, V., Ding, Z., Maznev, A.A., Chen, G., Nelson, K.A.: Observation of second sound in graphite at temperatures above 100 k. Science 364(6438), 375–379 (2019). https://doi.org/10.1126/science.aav3548

    Article  ADS  Google Scholar 

  7. Johnson, J.A., Maznev, A.A., Cuffe, J., Eliason, J.K., Minnich, A.J., Kehoe, T., Clivia, M., Torres, S., Chen, G., Nelson, K.A.: Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane. Phys. Rev. Lett. 110, 025901 (2013). https://doi.org/10.1103/PhysRevLett.110.025901

    Article  ADS  Google Scholar 

  8. Anufriev, R., Gluchko, S., Volz, S., Nomura, M.: Quasi-ballistic heat conduction due to levy phonon flights in silicon nanowires. ACS Nano 12(12), 11928–11935 (2018). https://doi.org/10.1021/acsnano.8b07597

    Article  Google Scholar 

  9. Anufriev, R., Gluchko, S., Volz, S., Nomura, M.: Probing ballistic thermal conduction in segmented silicon nanowires. Nanoscale 11(28), 13407–13414 (2019). https://doi.org/10.1039/C9NR03863A

    Article  Google Scholar 

  10. Chang, C.W., Okawa, D., Garcia, H., Majumdar, A., Zettl, A.: Breakdown of Fouriers law in nanotube thermal conductors. Phys. Rev. Lett. 101, 075903 (2008). https://doi.org/10.1103/PhysRevLett.101.075903

    Article  ADS  Google Scholar 

  11. Xu, X., Wang, Yu., Zhang, K.: Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5, 1–6 (2014). https://doi.org/10.1038/ncomms4689

    Article  ADS  Google Scholar 

  12. Li, N., Ren, J., Wang, L., Zhang, G., Hänggi, P., Li, B.: Colloquium: phononics: manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012). https://doi.org/10.1103/RevModPhys.84.1045

    Article  ADS  Google Scholar 

  13. Shahil, K.M., Balandin, A.A.: Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 152(15), 1331–1340 (2012). https://doi.org/10.1016/j.ssc.2012.04.034

    Article  ADS  Google Scholar 

  14. Malik, F.K., Fobelets, K.: A review of thermal rectification in solid-state devices. J. Semicond. 43(10), 1–18 (2022). https://doi.org/10.1088/1674-4926/43/10/103101

    Article  Google Scholar 

  15. Dwivedi, N., Ott, A.K.: Graphene overcoats for ultra-high storage density magnetic media. Nat. Commun. 12, 1–13 (2021)

    Google Scholar 

  16. Moore, A.L., Shi, L.: Emerging challenges and materials for thermal management of electronics. Mater. Today 17(4), 163–174 (2014). https://doi.org/10.1016/j.mattod.2014.04.003

    Article  Google Scholar 

  17. Majumdar, A.: Microscale heat conduction in dielectric thin films. J. Heat Transf. 115(1), 7–16 (1993). https://doi.org/10.1115/1.2910673

    Article  ADS  Google Scholar 

  18. Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Phillpot, S.R.: Nanoscale thermal transport. J. Appl. Phys. 93(73), 793–818 (2003). https://doi.org/10.1063/1.1524305

    Article  ADS  Google Scholar 

  19. Spohn, H.: The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics. J. Stat. Phys. 124, 1041–1104 (2006). https://doi.org/10.1007/s10955-005-8088-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kuzkin, V.A., Krivtsov, A.M.: Unsteady ballistic heat transport: linking lattice dynamics and kinetic theory. Acta Mech. 232, 1983–1996 (2021). https://doi.org/10.1007/s00707-020-02927-w

    Article  MathSciNet  MATH  Google Scholar 

  21. Klein, G., Prigogine, I.: Sur la mecanique statistique des phenomenes irreversibles III. Physica 19(1–12), 1053–1071 (1953). https://doi.org/10.1016/S0031-8914(53)80120-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Schrödinger, E.: Zur Dynamik elastisch gekoppelter Punktsysteme. Ann. Phys. 349(14), 916–944 (1914). https://doi.org/10.1002/andp.19143491405

    Article  MATH  Google Scholar 

  23. Muhlich, U., Abali, B.E., dell’Isola, F.: Commented translation of Erwin Schrödinger’s paper ‘On the dynamics of elastically coupled point systems’ (Zur Dynamik elastisch gekoppelter Punktsysteme). Math. Mech. Solids 26(1), 133–147 (2020). https://doi.org/10.1177/1081286520942955

    Article  MATH  Google Scholar 

  24. Krivtsov, A.M.: Dynamics of matter and energy. ZAMM (2022). https://doi.org/10.1002/zamm.202100496

    Article  Google Scholar 

  25. Hemmer, P.C.: Dynamic and stochastic types of motion in the linear chain. Norges tekniske hoiskole (1959)

  26. Krivtsov, A.M.: Heat transfer in infinite harmonic one dimensional crystals. Dokl. Phys. 60(9), 407–411 (2015). https://doi.org/10.1134/S1028335815090062

    Article  ADS  Google Scholar 

  27. Sokolov, A.A., Müller, W.H., Porubov, A.V., Gavrilov, S.N.: Heat conduction in 1d harmonic crystal: discrete and continuum approaches. Int. J. Heat Mass Transf. 176, 121442 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121442

    Article  Google Scholar 

  28. Gavrilov, S.N.: Discrete and continuum fundamental solutions describing heat conduction in a 1d harmonic crystal: discrete-to-continuum limit and slow-and-fast motions decoupling. Int. J. Heat Mass Transf. 194, 123019 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123019

    Article  Google Scholar 

  29. Guzev, M.A., Sadovskii, V.M., Qi, C.: Inhomogeneous distribution of thermal characteristics in harmonic crystal. In: Indeitsev, D., Krivtsov, A. (eds.) Advanced Problems in Mechanics. APM 2019. Lecture Notes in Mechanical Engineering, pp. 124–138. Springer, Cham (2020)

    Google Scholar 

  30. Gudimenko, A.I.: Heat flow in a one-dimensional semi-infinite harmonic lattice with an absorbing boundary. Dal’nevostochnyi Matematicheskii Zhurnal 20(1), 38–51 (2020). https://doi.org/10.47910/FEMJ202004. (in Russian)

    Article  MathSciNet  MATH  Google Scholar 

  31. Northrop, G.A., Wolfe, J.P.: Ballistic phonon imaging in germanium. Phys. Rev. B 22(12), 6196–6217 (1980). https://doi.org/10.1103/PhysRevB.22.6196

    Article  ADS  Google Scholar 

  32. Northrop, G.A., Wolfe, J.P.: Phonon imaging: theory and applications. In: Bron, W.E. (ed.) Nonequilibrium Phonon Dynamics, pp. 165–242. Nato ASI Subseries B, Les Arcs (1985)

    Chapter  Google Scholar 

  33. Ravichandran, N.K., Zhang, H., Minnich, A.J.: Spectrally resolved specular reflections of thermal phonons from atomically rough surfaces. Phys. Rev. X 8(4), 1–11 (2018). https://doi.org/10.1103/PhysRevX.8.041004

    Article  Google Scholar 

  34. Krivtsov, A.M., Kuzkin, V.A.: Discrete and continuum thermomechanics. In: Altenbach, H., Öchsner, A. (eds.) Encyclopedia of Continuum Mechanics, pp. 1–16. Springer, Germany (2018)

    Google Scholar 

  35. Landau, L.D., Lifshitz, E.M.: Statistical Physics. Pergamon Press, Oxford (1958)

    MATH  Google Scholar 

  36. Casas-Vázquez, J., Jou, D.: Temperature in nonequilibrium states: a review of open problems and current proposals. Rep. Prog. Phys. 66(11), 1937–2023 (2003). https://doi.org/10.1088/0034-4885/66/11/R03

    Article  ADS  Google Scholar 

  37. Puglisi, A., Sarracino, A., Vulpiani, A.: Temperature in and out of equilibrium: a review of concepts, tools and attempts. Phys. Rep. 709, 1–60 (2017). https://doi.org/10.1016/j.physrep.2017.09.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Krivtsov, A.M.: Energy oscillations in a one-dimensional crystal. Dokl. Phys. 59(9), 427–430 (2014). https://doi.org/10.1134/S1028335814090080

    Article  Google Scholar 

  39. Kuzkin, V.A., Krivtsov, A.M.: Fast and slow thermal processes in harmonic scalar lattices. J. Phys. Condens. Matter 29, 505401 (2017). https://doi.org/10.1088/1361-648X/aa98eb

    Article  Google Scholar 

  40. Gavrilov, S.N., Krivtsov, A.M., Tsvetkov, D.V.: Heat transfer in a one-dimensional harmonic crystal in a viscous environment subjected to an external heat supply. Contin. Mech. Thermodyn. 31(1), 255–272 (2018). https://doi.org/10.1007/s00161-018-0681-3

    Article  ADS  MathSciNet  Google Scholar 

  41. Takizawa, E., Kobayasi, K.: On the stochastic types of motion in a system of linear harmonic oscillators. Chin. J. Phys. 6(1), 39–66 (1968)

    Google Scholar 

  42. Lee, K.H.: Dynamics of harmonically bound semi-infinite and infinite chains with friction and applied forces. J. Math. Phys. 13, 1312–1315 (1972). https://doi.org/10.1063/1.1666137

    Article  ADS  MATH  Google Scholar 

  43. Lee, K.H., Kim, H.: Exact solutions for dynamics of finite, semi-infinite, and infinite chains with general boundary and initial conditions. J. Chem. Phys. 57(12), 5037–5044 (1972). https://doi.org/10.1063/1.1678186

    Article  ADS  Google Scholar 

  44. Ahmed, H., Nataryan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 100(1), 90–93 (1974). https://doi.org/10.1109/T-C.1974.223784

    Article  MathSciNet  MATH  Google Scholar 

  45. Vladimirov, V.: Equations of Mathematical Physics. Marcel Dekker, New York (1971)

    MATH  Google Scholar 

  46. Shi, L.: Nonresistive heat transport by collective phonon flow. Science 364(6438), 332–333 (2019). https://doi.org/10.1126/science.aax2319

    Article  ADS  Google Scholar 

  47. Gelfand, I., Shilov, G.: Generalized Functions. Properties and Operations. Academic Press, New York (1964)

    Google Scholar 

  48. Allen, P.B., Nghiem, N.A.: Heat pulse propagation and nonlocal phonon heat transport in one-dimensional harmonic chains. Phys. Rev. B 105, 174302 (2022). https://doi.org/10.1103/PhysRevB.105.174302

    Article  ADS  Google Scholar 

  49. Candy, J., Rozmus, W.: A symplectic integration algorithm for separable Hamiltonian functions. J. Comput. Phys. 92(1), 230–256 (1991). https://doi.org/10.1016/0021-9991(91)90299-Z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. McLachlan, R.I., Atela, P.: The accuracy of symplectic integrators. Nonlinearity 5(2), 541–562 (1992). https://doi.org/10.1088/0951-7715/5/2/011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Erdelyi, A.: Asymptotic Expansions. Courier Corporation, New York (1956)

    MATH  Google Scholar 

  52. Fedoryuk, M.: The Saddle-Point Method. Nauka, Moscow (1977)

    MATH  Google Scholar 

  53. Shishkina, E.V., Gavrilov, S.N.: Unsteady ballistic heat transport in a 1d harmonic crystal due to a source on an isotopic defect. arXiv arXiv:2206.08079 (2022)

  54. Kuzkin, V.A., Krivtsov, A.M.: Ballistic resonance and thermalization in Fermi-Pasta-Ulam-Tsingou chain at finite temperature. Phys. Rev. E 101, 042209 (2020). https://doi.org/10.1103/PhysRevE.101.042209

    Article  ADS  MathSciNet  Google Scholar 

  55. Ivanova, E.A.: Modeling of thermal and electrical conductivities by means of a viscoelastic Cosserat continuum. Contin. Mech. Thermodyn. 34, 555–586 (2022). https://doi.org/10.1007/s00161-021-01071-7

    Article  ADS  MathSciNet  Google Scholar 

  56. Kapitza, P.L.: The study of heat transfer in helium II. J. Phys. USSR 4(181), 114–153 (1941)

    Google Scholar 

  57. Gendelman, O.V., Jithu, P.: Kapitza thermal resistance in linear and nonlinear chain models: isotopic defect. Phys. Rev. E 103, 052113 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  58. Jithu, P., Gendelman, O.V.: Kapitza resistance at a domain boundary in linear and nonlinear chains. Phys. Rev. E 104, 054119 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  59. Hu, R., Dai, J., Tian, Z.T.: Introduction to the atomistic green’s function approach: application to nanoscale phonon transport. In: Liao, B. (ed.) Nanoscale Energy Transport: Emerging Phenomena, Methods and Applications, pp. 1–26. IOP Publishing, Bristol (2020)

    Google Scholar 

  60. Tian, Z.T., White, B.E., Jr., Sun, Y.: Phonon wave-packet interference and phonon tunneling based energy transport across nanostructured thin films. Appl. Phys. Lett. 96(26), 263113 (2010). https://doi.org/10.1063/1.3458831

    Article  ADS  Google Scholar 

  61. Qu, X., Gu, J.: Phonon transport and thermal conductivity of diamond superlattice nanowires: a comparative study with SiGe superlattice nanowires. RSC Adv. 10(3), 1243–1248 (2020). https://doi.org/10.1039/C9RA08520C

    Article  ADS  Google Scholar 

  62. Korznikova, E.A., Kuzkin, V.A., Krivtsov, A.M., Xiong, Daxing, Gani, Vakhid A., Kudreyko, A.A., Dmitriev, S.V.: Equilibration of sinusoidal modulation of temperature in linear and nonlinear chains. Phys. Rev. E 102, 062148 (2020). https://doi.org/10.1103/PhysRevE.102.062148

    Article  ADS  MathSciNet  Google Scholar 

  63. Liazhkov, S.D., Kuzkin, V.A.: Unsteady two-temperature heat transport in mass-in-mass chains. Phys. Rev. E 105, 054145 (2022). https://doi.org/10.1103/PhysRevE.105.054145

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation (Grant No. 21-71-10129). The author is deeply grateful to V.A. Kuzkin, A.M. Krivtsov, S.N. Gavrilov, E.V. Shishkina, A.A. Sokolov, A.S. Murachev, N.M. Bessonov, S.A. Rukolaine and E.F. Grekova for useful and stimulating discussions and to anonymous referees for the valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei D. Liazhkov.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Derivation of the discrete analogue of fundamental solution

Here, we derive the discrete fundamental solution, namely \(g_{n,j_s}^S(\Delta N)\). Expanding a product of cosines in (17) yields

$$\begin{aligned} \begin{array}{l} \displaystyle S_{nj}=\frac{1}{16\pi ^2}\iint _{-\pi }^\pi \Bigg [\cos ({(n+j+1)(\theta _1+\theta _2)})+ \cos ({(n+j+1)(\theta _1-\theta _2)}) \\ \quad \quad \quad \; +\displaystyle \cos ({(n-j)(\theta _1+\theta _2)})+\cos ({(n-j)(\theta _1-\theta _2)})+\displaystyle \cos {\left( \frac{(2j+1)(\theta _1+\theta _2)}{2}-\frac{(2n+1)(\theta _1-\theta _2)}{2}\right) }\\ \quad \quad \quad \; +\displaystyle \cos {\left( \frac{(2j+1)(\theta _1+\theta _2)}{2}+\frac{(2n+1)(\theta _1-\theta _2)}{2}\right) }+\cos {\left( \frac{(2n+1)(\theta _1+\theta _2)}{2}-\frac{(2j+1)(\theta _1-\theta _2)}{2}\right) }\\ \quad \quad \quad \; +\displaystyle \cos {\left( \frac{(2n+1)(\theta _1+\theta _2)}{2}+\frac{(2j+1)(\theta _1-\theta _2)}{2}\right) }\Bigg ] \cos \left( {(\omega (\theta _1)-\omega (\theta _2)) t}\right) \textrm{d}\theta _1 \textrm{d}\theta _2. \end{array}\nonumber \\ \end{aligned}$$
(42)

Therefore, the expression for \(g_{n,j_s}^S(\Delta N)\) can be rewritten as a sum of the following eight terms:

$$\begin{aligned} \displaystyle g_{n,j_s}^S(\Delta N)= & {} \frac{1}{16\pi ^2 a}\iint _{-\pi }^\pi \cos {\left( (\omega (\theta _1)-\omega (\theta _2)) t\right) }\sum _{i=1}^8 \varphi _i(\theta _1,\theta _2) \textrm{d}\theta _1 \textrm{d}\theta _2,\nonumber \\ \displaystyle \varphi _1(\theta _1,\theta _2)= & {} \frac{1}{2\Delta N}\sum _{j=j_s-\Delta N+1}^{j_s+\Delta N}\cos {((n+j+1)(\theta _1+\theta _2))}\nonumber \\= & {} \displaystyle \frac{1}{2\Delta N}\cos {\Bigl (\frac{3(\theta _1+\theta _2)}{2}+(\theta _1+\theta _2)(n+j_s)\Bigr )}\frac{\sin {\left( (\theta _1+\theta _2)\Delta N \right) }}{\sin {\left( \frac{\theta _1+\theta _2}{2}\right) }},\nonumber \\ \displaystyle \varphi _2(\theta _1,\theta _2)= & {} \frac{1}{2\Delta N}\sum _{j=j_s-\Delta N+1}^{j_s+\Delta N}\cos {((n+j+1)\Delta \theta )}\nonumber \\= & {} \displaystyle \frac{1}{2\Delta N}\cos {\left( \left( n+j_s+\frac{3}{2}\right) \Delta \theta \right) }\frac{\sin {(\Delta N \Delta \theta )}}{\sin {\frac{\Delta \theta }{2}}},\nonumber \\ \displaystyle \varphi _3(\theta _1,\theta _2)= & {} \frac{1}{2\Delta N}\sum _{j=j_s-\Delta N+1}^{j_s+\Delta N}\cos {((n-j)(\theta _1+\theta _2))}\nonumber \\= & {} \displaystyle \frac{1}{2\Delta N}\cos {\left( (\theta _1+\theta _2)\left( \frac{1}{2}+j_s-n\right) \right) } \displaystyle \frac{\sin {\left( (\theta _1+\theta _2)\Delta N \right) }}{\sin {\left( \frac{\theta _1+\theta _2}{2}\right) }},\nonumber \\ \displaystyle \varphi _4(\theta _1,\theta _2)= & {} \frac{1}{2\Delta N}\sum _{j=j_s-\Delta N+1}^{j_s+\Delta N}\cos {((n-j)\Delta \theta )}\nonumber \\= & {} \displaystyle \frac{1}{2\Delta N}\cos {\left( \Delta \theta \left( \frac{1}{2}+j_s-n\right) \right) }\frac{\sin {(\Delta N \Delta \theta )}}{\sin {\frac{\Delta \theta }{2}}},\nonumber \\ \displaystyle \varphi _5(\theta _1,\theta _2)= & {} \frac{1}{2\Delta N}\sum _{j=j_s-\Delta N+1}^{j_s+\Delta N}\cos {\left( \frac{(2j+1)(\theta _1+\theta _2)}{2}-\frac{(2n+1)(\theta _1-\theta _2)}{2}\right) }\nonumber \\= & {} \displaystyle \frac{1}{2\Delta N}\cos {\left( \theta _1\left( \frac{1}{2}+j_s-n\right) +\theta _2\left( \frac{3}{2}+j_s+n\right) \right) } \frac{\sin {\left( (\theta _1+\theta _2)\Delta N \right) }}{\sin {\left( \frac{\theta _1+\theta _2}{2}\right) }},\nonumber \\ \displaystyle \varphi _6(\theta _1,\theta _2)= & {} \frac{1}{2\Delta N}\sum _{j=j_s-\Delta N+1}^{j_s+\Delta N}\cos {\left( \frac{(2j+1)(\theta _1+\theta _2)}{2}+\frac{(2n+1)(\theta _1-\theta _2)}{2}\right) }\nonumber \\= & {} \displaystyle \frac{1}{2\Delta N}\cos {\left( \theta _2\left( \frac{1}{2}+j_s-n\right) +\theta _1\left( \frac{3}{2}+j_s+n\right) \right) } \frac{\sin {\left( (\theta _1+\theta _2)\Delta N \right) }}{\sin {\left( \frac{\theta _1+\theta _2}{2}\right) }},\nonumber \\ \displaystyle \varphi _7(\theta _1,\theta _2)= & {} \frac{1}{2\Delta N}\sum _{j=j_s-\Delta N+1}^{j_s+\Delta N}\cos {\left( \frac{(2n+1)(\theta _1+\theta _2)}{2}-\frac{(2j+1)(\theta _1-\theta _2)}{2}\right) }\nonumber \\= & {} \displaystyle \frac{1}{2\Delta N}\cos {\left( \theta _1\left( \frac{1}{2}+j_s-n\right) -\theta _2\left( \frac{3}{2}+j_s+n\right) \right) } \frac{\sin {\left( \Delta N\Delta \theta \right) }}{\sin {\left( \frac{\Delta \theta }{2}\right) }},\nonumber \\ \displaystyle \varphi _8(\theta _1,\theta _2)= & {} \frac{1}{2\Delta N}\sum _{j=j_s-\Delta N+1}^{j_s+\Delta N}\cos {\left( \frac{(2n+1)(\theta _1+\theta _2)}{2}+\frac{(2j+1)(\theta _1-\theta _2)}{2}\right) }\nonumber \\= & {} \displaystyle \frac{1}{2\Delta N}\cos {\left( \theta _2\left( \frac{1}{2}+j_s-n\right) -\theta _1\left( \frac{3}{2}+j_s+n\right) \right) } \frac{\sin {\left( \Delta N\Delta \theta \right) }}{\sin {\left( \frac{\Delta \theta }{2}\right) }}, \quad \Delta \theta =\theta _1-\theta _2. \end{aligned}$$
(43)

We rewrite the components \(\varphi _2, \varphi _4, \varphi _7, \varphi _8\), containing the difference of wave numbers \(\Delta \theta \) as follows:

$$\begin{aligned} \begin{array}{l} \displaystyle \varphi _2=\frac{\Delta {\theta }}{2}\Bigg [\frac{\cos {\frac{3\Delta \theta }{2}}}{\sin {\frac{\Delta \theta }{2}}}\left( \cos {\left( (n+j_s)\Delta \theta \right) }\right) -\frac{\sin {\frac{3\Delta \theta }{2}}}{\sin {\frac{\Delta \theta }{2}}}\left( \sin {\left( (n+j_s)\Delta \theta \right) }\right) \Bigg ]\textrm{sinc}(\Delta N \Delta \theta ),\\ \normalsize \displaystyle \textrm{sinc}(x)=\frac{\sin {x}}{x},\\ \small \displaystyle \varphi _4=\frac{\Delta \theta }{2}\Bigg [\cot {\frac{\Delta \theta }{2}}\cos {((n-j_s)\Delta \theta )}+\sin {((n-j_s)\Delta \theta )}\Bigg ]\textrm{sinc}(\Delta N \Delta \theta ),\\ \displaystyle \varphi _7=\frac{\Delta \theta }{2}\Bigg [\frac{\cos {\frac{3\Delta \theta }{2}}}{\sin {\frac{\Delta \theta }{2}}} \cos {(\Delta \theta (n+j_s)-\theta _1(2n+1))}-\frac{\sin {\frac{3\Delta \theta }{2}}}{\sin {\frac{\Delta \theta }{2}}}\sin {(\Delta \theta (n+j_s)-\theta _1(2n+1))}\Bigg ]\\ \textrm{sinc}(\Delta N \Delta \theta ),\\ \displaystyle \varphi _8=\frac{\Delta \theta }{2}\Bigg [\cot {\frac{\Delta \theta }{2}} \cos {(\theta _1(2n+1)-\Delta \theta (n-j_s))}-\sin {(\theta _1(2n+1)-\Delta \theta (n-j_s))}\Bigg ]\\ \textrm{sinc}(\Delta N \Delta \theta ). \end{array} \end{aligned}$$
(44)

Equation  (44) can be simplified due to our assumptions about continualization (see Sect. 3.1). For \(\Delta N \gg 1\), the function \(\textrm{sinc}(x)\) is equal to 1 if \(\Delta \theta \) is zero and fast tends to zero if \(\Delta \theta \) is not equal to zero. Therefore, the main contribution to the function \(g_{n,j_s}^S(\Delta N)\) comes from two close wavenumbers \(\theta _1, \theta _2\). Therefore, in the limit cases of \(\Delta \theta \rightarrow 0\) and \(\Delta N~\gg 1\), we have

$$\begin{aligned} \begin{array}{l} \displaystyle \varphi _2=\cos {((n+j_s)\Delta \theta )}\textrm{sinc}(\Delta N \Delta \theta )+O\left( \frac{1}{\Delta N}\right) ,\\ \displaystyle \varphi _4=\cos {((n-j_s)\Delta \theta )}\textrm{sinc}(\Delta N \Delta \theta )+O\left( \frac{1}{\Delta N}\right) ,\\ \displaystyle \varphi _7=\cos ({\theta _1(2n+1)-(n+j_s)\Delta \theta })\textrm{sinc}(\Delta N \Delta \theta )+O\left( \frac{1}{\Delta N}\right) ,\\ \displaystyle \varphi _8=\cos ({\theta _1(2n+1)-(n-j_s)\Delta \theta })\textrm{sinc}(\Delta N \Delta \theta )+O\left( \frac{1}{\Delta N}\right) ,\\ \displaystyle \varphi _1=\varphi _3=\varphi _5=\varphi _6=O\left( \frac{1}{\Delta N}\right) . \end{array}\nonumber \\ \end{aligned}$$
(45)

The difference \(\omega (\theta _1)-\omega (\theta _2)\) can be decomposed into series:

$$\begin{aligned} \omega (\theta _1)-\omega (\theta _2)\approx \omega '(\theta _1)\Delta \theta . \end{aligned}$$
(46)

Substitution of (45), (46) to (43) with dropping out of the terms of order \(O\left( \frac{1}{\Delta N}\right) \) gives the expression (19).

B Derivation of expressions for wave packets in the limit of mesoscale

We show that approximation of expressions for wave packets in (20) in the limit case (\(\Delta N \gg 1\)) approaches us to the Fourier transform of the \(\textrm{sinc}\) function. Indeed,

$$\begin{aligned} \begin{array}{l} \displaystyle \frac{1}{2\pi a}\int _{\theta -\pi }^{\theta +\pi }\cos {(q \Xi )}\textrm{sinc}(q \Delta N)\textrm{d}q=\frac{1}{2\pi a \Delta N}\int _{(\theta -\pi )\Delta N}^{(\theta +\pi )\Delta N}\cos {\left( \frac{q \Xi }{\Delta N}\right) }\textrm{sinc}\,q \textrm{d}q\\ \displaystyle \quad \approx \frac{1}{2\pi a \Delta N}\int _{-\infty }^{\infty }\cos {\left( \frac{q \Xi }{\Delta N}\right) }\textrm{sinc}\,q \textrm{d}q=\textrm{Re}\left( \frac{1}{2\pi a \Delta N}\int _{-\infty }^{\infty }e^{\textrm{i}\left( \frac{q \Xi }{\Delta N}\right) }\textrm{sinc}\,q \textrm{d}q\right) . \end{array} \end{aligned}$$
(47)

Analogously,

$$\begin{aligned} \displaystyle \frac{1}{2\pi a}\int _{\theta -\pi }^{\theta +\pi }\sin {(q \Xi )}\textrm{sinc}(q \Delta N)\textrm{d}q\approx \textrm{Im}\left( \frac{1}{2\pi a \Delta N}\int _{-\infty }^{\infty }e^{\textrm{i}\left( \frac{q \Xi }{\Delta N}\right) }\textrm{sinc}\,q \textrm{d}q\right) . \end{aligned}$$
(48)

Since

$$\begin{aligned} \frac{1}{2\pi }\int _{-\infty }^\infty e^{\textrm{i}\xi q}\textrm{sinc}\,q\;\textrm{d}q=\frac{1}{2}H\left( 1-\vert \xi \vert \right) , \end{aligned}$$
(49)

then one gets

$$\begin{aligned} \begin{array}{l} \displaystyle \frac{1}{2\pi a \Delta N}\int _{-\infty }^{\infty }\cos {\left( \frac{q \Xi }{\Delta N}\right) }\textrm{sinc}\,q \;\textrm{d}q=\frac{1}{2a\Delta N}H\left( 1-\frac{ \vert \Xi \vert }{\Delta N}\right) ,\\ \displaystyle \frac{1}{2\pi a \Delta N}\int _{-\infty }^{\infty }\sin {\left( \frac{q \Xi }{\Delta N}\right) }\textrm{sinc}\,q \;\textrm{d}q=0. \end{array} \end{aligned}$$
(50)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liazhkov, S.D. Unsteady thermal transport in an instantly heated semi-infinite free end Hooke chain. Continuum Mech. Thermodyn. 35, 413–430 (2023). https://doi.org/10.1007/s00161-023-01186-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-023-01186-z

Keywords

Navigation