Skip to main content
Log in

Models and auxetic characteristics of a simple cubic lattice of spherical particles

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

For a simple cubic lattice of spherical particles with three translational and three rotational degrees of freedom, using the method of structural modeling, discrete, long-wavelength continuum and higher-order gradient models are developed. The higher-order gradient model of such a medium is compared with the Lame equations for cubic symmetry media. From this comparison, the relationships are established between the second-order elastic constants and the microstructure parameters of this medium such as the size of particles and the parameters of their force and torque interactions. Based on the dependences found, the relationship between Poisson’s ratios of the considered anisotropic material and its structural parameters is analyzed. It is found that, at some values of the microstructure parameters, this medium can manifest the auxetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity (Translated from Russian by J. B. Sykes and W. H. Reid). Pergamon Press, London, p. 134 (1959)

  2. Evans, K.E.: Auxetic polymers: a new range of materials. Endeavour 15, 170–174 (1991)

    Article  Google Scholar 

  3. Konyok, D.A., Wojciechowski, K.W., Pleskachevsky, Y.M., Shilko, S.V.: Materials with negative Poisson’s ratio (The review). Compos. Mech. Des. 10, 35–69 (2004). (in Russian)

    Google Scholar 

  4. Lim, T.C.: Micromechanical models for auxetic materials. In: Auxetic Materials and Structures and Engineering Materials, pp. 45–105. Springer, Singapore (2015). https://doi.org/10.1007/978-981-287-275-3_2

  5. Kelkar, P.U., Kim, H.S., Cho, K.-H., Kwak, J.Y., Kang, C.-Y., Song, H.-C.: Cellular auxetic structures for mechanical metamaterials: a review. Sensors 20, 3132 (2020). https://doi.org/10.3390/s20113132

    Article  ADS  Google Scholar 

  6. Wu, W., Hu, W., Qian, G., Liao, H., Xu, X., Berto, F.: Mechanical design and multifunctional applications of chiral mechanical metamaterials: a review. Mater. Des. 180, 107950 (2019). https://doi.org/10.1016/j.matdes.2019.107950

    Article  Google Scholar 

  7. Gorodtsov, V.A., Lisovenko, D.S.: Auxetics among materials with cubic anisotropy. Mech. Solid. 55, 461–474 (2020). https://doi.org/10.3103/S0025654420040044

    Article  ADS  Google Scholar 

  8. Zubov, V.G., Firsova, M.M.: Elastic properties of quartz near the \(\alpha \)-\(\beta \) transition. Soviet Phys. Crystallogr. 7, 374–376 (1962)

    Google Scholar 

  9. Veronda, D.R., Westmann, R.A.: Mechanical characterization of skin-finite deformations. J. Biomech. 3, 111–124 (1970)

    Article  Google Scholar 

  10. Williams, J.L., Lewis, J.L.: Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis. J. Biomech. Eng. 104, 50–56 (1982)

    Article  Google Scholar 

  11. Li, Y.: The anisotropic behavior of Poisson’s ratio, Young’s modulus, and shear modulus in hexagonal materials. Phys. Status Solidi (A) 38, 171–175 (1976)

    Article  ADS  Google Scholar 

  12. Gunton, D.J., Saunders, G.A.: The Young’s modulus and Poisson’s ratio of arsenic, antimony and bismuth. J. Mater. Sci. 7, 1061–1068 (1972)

    Article  ADS  Google Scholar 

  13. Kimizuka, H., Kaburaki, H., Kogure, Y.: Mechanism for negative Poisson ratios over the \(\alpha \)-\(\beta \) transition of cristobalite, SiO\(_{2}\): a molecular-dynamics study. Phys. Rev. Lett. 84, 5548–5551 (2000)

    Article  ADS  Google Scholar 

  14. Grima, J.N., Gatt, R., Alderson, A., Evans, K.E.: On the origin of auxetic behaviour in the silicate \(\alpha \)-cristobalite. J. Mater. Chem. 15, 4003–4005 (2005)

    Article  Google Scholar 

  15. Yeganeh-Haeri, A., Weidner, D.J., Parise, J.B.: Elasticity of \(\alpha \)-cristobalite: a silicon dioxide with a negative Poisson’s ratio. Science 257(5070), 650–652 (1992). https://doi.org/10.1126/science.257.5070.650

    Article  ADS  Google Scholar 

  16. Keskar, N.R., Chelikowsky, J.R.: Negative Poisson ratios in crystalline SiO\(_{2}\) from first-principles calculations. Nature 358(6383), 222–224 (1992). https://doi.org/10.1038/358222a0

    Article  ADS  Google Scholar 

  17. Grima, J.N., Gatt, R., Alderson, A., Evans, K.E.: On the origin of auxetic behaviour in the silicate \(\alpha \)-cristobalite. Mater. Chem. 15(37), 4003–4005 (2005). https://doi.org/10.1039/b508098c

    Article  Google Scholar 

  18. Grima-Cornish, J.N., Vella-żarb, L., Wojciechowski, K.W., Grima, J.N.: Shearing deformations of \(\beta \)-cristobalite-like boron arsenate. Symmetry 13(6), 977 (2021). https://doi.org/10.3390/sym13060977

    Article  ADS  Google Scholar 

  19. Jiang, J.-W., Park, H.S.: Negative Poisson’s ratio in single-layer black phosphorus. Nat. Commun. 5, 4727 (2014). https://doi.org/10.1038/ncomms5727

    Article  ADS  Google Scholar 

  20. Novikova, N.E., Lisovenko, D.S., Sizova, N.L.: Peculiarities of the structure, moduli of elasticity, and Knoop indentation patterns of deformation and fracture of single crystals of potassium, rubidium, cesium, and ammonium hydrophthalates. Crystallogr. Rep. 63(3), 438–450 (2018). https://doi.org/10.1134/S1063774518030197

    Article  ADS  Google Scholar 

  21. Ji, S., Li, L., Motra, H.B., Wuttke, F., Sun, S., Michibayashi, K., Salisbury, M.H.: Poisson’s ratio and auxetic properties of natural rocks. J. Geophys. Res. Sol. Earth 123, 1161–1185 (2018)

    Article  ADS  Google Scholar 

  22. Zaitsev, V.Y., Radostin, A.V., Pasternak, E., Dyskin, A.: Extracting real-crack properties from non-linear elastic behavior of rocks: abundance of cracks with dominating normal compliance and rocks with negative Poisson ratios. Nonlinear Proc. Geophys. 24, 543–551 (2017)

    Article  ADS  Google Scholar 

  23. Baughman, R.H., Shacklette, J.M., Zakhidov, A.A., Stafström, S.: Negative Poisson’s ratios as a common feature of cubic metals. Nature 392, 362–365 (1998). https://doi.org/10.1038/32842

    Article  ADS  Google Scholar 

  24. Lakes, R.: Foam structures with a negative Poisson’s ratio. Science 235, 1038–1041 (1987)

    Article  ADS  Google Scholar 

  25. Ren, X., Das, R., Tran, P., Ngo, T.D., Xie, Y.M.: Auxetic metamaterials and structures: a review. Smart Mater. Struct. 27, 23001 (2018). https://doi.org/10.1088/1361-665X/aaa61c

    Article  Google Scholar 

  26. Agnelli, F., Constantinescu, A., Nika, G.: Design and testing of 3D-printed micro-architectured polymer materials exhibiting a negative Poisson’s ratio. Contin. Mech. Thermodyn. 32, 433–449 (2020). https://doi.org/10.1007/s00161-019-00851-6

    Article  ADS  MathSciNet  Google Scholar 

  27. Solyaev, Y., Lurie, S., Ustenko, A.: Numerical modeling of a composite auxetic metamaterials using micro-dilatation theory. Contin. Mech. Thermodyn. 31, 1099–1107 (2019). https://doi.org/10.1007/s00161-018-0730-y

    Article  ADS  MathSciNet  Google Scholar 

  28. Zhou, L., Jiang, H.: Auxetic composites made of 3D textile structure and polyurethane foam. Phys. Status Solidi B 253, 1331–1341 (2016)

    Article  ADS  Google Scholar 

  29. Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Auxetic mechanics of crystalline materials. Mech. Solids 45, 529–545 (2010)

    Article  ADS  Google Scholar 

  30. Fedotovskii, V.S.: A Porous medium as an acoustic metamaterial with negative inertial and elastic properties. Acoust. Phys. 64, 548–554 (2018)

    Article  ADS  Google Scholar 

  31. Hall, L.J., Coluci, V.R., Galvão, D.S., Kozlov, M.E., Zhang, M., Dantas, S.O., Baughman, R.H.: Sign change of Poisson’s ratio for carbon nanotube sheets. Science 320, 504–507 (2008)

    Article  ADS  Google Scholar 

  32. Goldstein, R.V., Gorodtsov, V.A., Lisovenko, D.S.: Young’s moduli and Poisson‘s ratio of curvilinear anisotropic hexagonal and rhombohedral nanotubes. Nanotubes-auxetics. Doklady Phys. 58, 400–404 (2013)

    Article  ADS  Google Scholar 

  33. Baimova, J.A., Rysaeva, L.K., Dmitriev, S.V., Lisovenko, D.S., Gorodtsov, V.A., Indeitsev, D.A.: Auxetic behaviour of carbon nanostructures. Mater. Phys. Mech. 33, 1–11 (2017)

    Google Scholar 

  34. Evans, K.E., Alderson, A.: Auxetic materials: functional materials and structures from lateral thinking. Adv. Mater. 12, 617–628 (2000)

    Article  Google Scholar 

  35. Underhill, R.S.: Defence applications of auxetic materials. Defense Syst. Inf. Anal. Center J. 1, 7–13 (2014)

    Google Scholar 

  36. Liu, Q.: Literature review: materials with negative Poisson’s ratios and potential applications to aerospace and defence. Aust. Gov. Dep. Def (2006)

  37. Choi, J.B., Lakes, R.S.: Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: experiment and analysis. Int. J. Fract. 80, 73–83 (1996)

    Article  Google Scholar 

  38. Donoghue, J.P., Alderson, K.L., Evans, K.E.: The fracture toughness of composite laminates with a negative Poisson’s ratio. Phys. Status Solidi (B) 246, 2011–2017 (2009)

    Article  ADS  Google Scholar 

  39. Alderson, K.L., Webber, R.S., Mohammed, U.F., Murphy, E., Evans, K.E.: An experimental study of ultrasonic attenuation in microporous polyethylene. Appl. Acoust. 50, 23–33 (1997)

    Article  Google Scholar 

  40. Howell, B., Prendergast, P., Hansen, L.: Examination of acoustic behavior of negative Poisson’s ratio materials. Appl. Acoust. 43, 141–148 (1994)

    Article  Google Scholar 

  41. Mazaev, A.V., Ajeneza, O., Shitikova, M.V.: Auxetics materials: classification, mechanical properties and applications. IOP Conf. Ser. Mater. Sci. Eng. 747, 012008 (2020)

    Article  Google Scholar 

  42. Theocaris, P.S., Stavroulakis, G.E., Panagiotopoulos, P.D.: Negative Poisson’s ratios in composites with star-shaped inclusions: a numerical homogenization approach. Arch. Appl. Mech. 67, 274–286 (1997)

    Article  ADS  MATH  Google Scholar 

  43. Wang, Z.-P., Hien Poh, L., Dirrenberger, J., Zhu, Y., Forest, S.: Isogeometric shape optimization of smoothed petal auxetic structures via computational periodic homogenization. Comput. Methods Appl. Mech. Eng. 323, 250–271 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Grima, J.N., Gatt, R., Alderson, A., Evans, K.E.: On the auxetic properties of “rotating rectangles’’ with different connectivity. J. Phys. Soc. Jpn. 74, 2866–2867 (2005)

    Article  ADS  Google Scholar 

  45. Grima, J.N., Farrugia, P.-S., Gatt, R., Attard, D.: On the auxetic properties of rotating rhombi and parallelograms: a preliminary investigation. Phys. Status Solidi (B) 245, 521–529 (2008)

    Article  ADS  Google Scholar 

  46. Grima, J.N., Chetcuti, E., Manicaro, E., Attard, D., Camilleri, M., Gatt, R., Evans, K.E.: On the auxetic properties of generic rotating rigid triangles. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 468, 810–830 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Grima, J.N., Gatt, R., Farrugia, P.-S.: On the properties of auxetic meta-tetrachiral structures. Phys. Status Solidi (B) 245, 511–520 (2008)

    Article  ADS  Google Scholar 

  48. Vasiliev, A.A., Pavlov, I.S.: Auxetic properties of chiral hexagonal Cosserat lattices composed of finite-sized particles. Phys. Status Solidi B 257, 1900389 (2020)

    Article  ADS  Google Scholar 

  49. Yingli, L., Gengwang, Y.: Vibration characteristics of innovative reentrant-chiral elastic metamaterials. Eur. J. Mech. A Solid 90, 104350 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ha, C.S., Plesha, M.E., Lakes, R.S.: Chiral three-dimensional lattices with tunable Poisson’s ratio. Smart Mater. Struct. 25, 054005 (2016). https://doi.org/10.1088/0964-1726/25/5/054005

    Article  ADS  Google Scholar 

  51. Caddock, B.D., Evans, K.E.: Microporous materials with negative Poisson’s ratios. I. Microstructure and mechanical properties. J. Phys. D Appl. Phys. 22, 1877–1882 (1989)

    Article  ADS  Google Scholar 

  52. Norris, A.N.: Poisson’s ratio in cubic materials. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 462, 3385–3405 (2006). https://doi.org/10.1098/rspa.2006.1726

    Article  MathSciNet  MATH  Google Scholar 

  53. Epishin, A.I., Lisovenko, D.S.: Extreme values of the Poisson’s ratio of cubic crystals. Tech. Phys. 61, 1516–1524 (2016). https://doi.org/10.1134/S1063784216100121

    Article  Google Scholar 

  54. Ha, C.S., Plesha, M.E., Lakes, R.S.: Chiral three-dimensional isotropic lattices with negative Poisson’s ratio. Phys. Status Solidi (B) 253, 1243–1251 (2016)

    Article  ADS  Google Scholar 

  55. Cabras, L., Brun, M.: A class of auxetic three-dimensional lattices. J. Mech. Phys. Solids. 91, 56–72 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Kim, J., Shin, D., Yoo, D.-S., Kim, K.: Regularly configured structures with polygonal prisms for three-dimensional auxetic behaviour. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 473, 20160926 (2017)

    MathSciNet  MATH  Google Scholar 

  57. Duan, S., Wen, W., Fang, D.: A predictive micropolar continuum model for a novel three-dimensional chiral lattice with size effect and tension-twist coupling behavior. J. Mech. Phys. Solids. 121, 23–46 (2018). https://doi.org/10.1016/j.jmps.2018.07.016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Yang, L., Harrysson, O., West, H., Cormier, D.: Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. Int. J. Solids Struct. 69, 475–490 (2015)

    Article  Google Scholar 

  59. Wang, X.-T., Wang, B., Li, X.-W., Ma, L.: Mechanical properties of 3D re-entrant auxetic cellular structures. Int. J. Mech. Sci. 131, 396–407 (2017)

    Article  Google Scholar 

  60. Wojciehowski, K.W.: Negative Poisson ratios at negative pressures. Mol. Phys. Rep. 10, 129–136 (1995)

    Google Scholar 

  61. Lethbridge, Z.A.D., Walton, R.I., Marmier, A., Smith, C.W., Evans, K.E.: Elastic anisotropy and extreme Poisson’s ratios in single crystals. Acta Mater. 58, 6444–6451 (2010)

    Article  ADS  Google Scholar 

  62. Turley, J., Sines, G.: The anisotropy of Young’s modulus, shear modulus and Poisson’s ratio in cubic materials. J. Phys. D Appl. Phys. 4, 264–271 (1971)

    Article  ADS  Google Scholar 

  63. Belomestnykh, V.N., Soboleva, E.G.: Unconventional approach to determination anisotropic Poisson’s ratios in cubic crystals. Lett. Mater. 2, 13–16 (2012)

    Article  Google Scholar 

  64. Erofeev, V.I., Pavlov, I.S.: Parametric identification of crystals having a cubic lattice with negative Poisson’s ratios. J. Appl. Mech. Tech. Phys. 56, 1015–1022 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Second and Higher Order Elastic Constants. In: Nelson, D.F. (ed.). V. 29a of Landolt-Bornstein—Group III Condensed Matter. Springer (1992)

  66. Branka, A.C., Heyes, D.M., Wojciechowski, K.W.: Auxeticity of cubic materials. Phys. Status Solidi B 246, 2063–2071 (2009)

    Article  ADS  Google Scholar 

  67. Eringen, A.C.: Microcontinuum Field Theories. 1: Foundation and Solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  68. Grekova, E., Porubov, A., dell’Isola, F.: Reduced linear constrained elastic and viscoelastic homogeneous Cosserat media as acoustic metamaterials. Symmet. MDPI 12, 521–543 (2020)

    Article  ADS  Google Scholar 

  69. Erofeev, V.I., Pavlov, I.S.: Structural Modeling of Metamaterials. Advanced Structured Materials, vol. 144. Springer, Switzerland (2021)

    Book  Google Scholar 

  70. Pavlov, I.S., Potapov, A.I., Maugin, G.A.: A 2D granular medium with rotating particles. Int. J. Solids Struct. 43, 6194–6207 (2006)

    Article  MATH  Google Scholar 

  71. Vasiliev, A.A., Dmitriev, S.V., Ishibashi, Y., Shigenari, T.: Elastic properties of a two-dimensional model of crystals containing particles with rotational degrees of freedom. Phys. Rev. B 65, 094101 (2002). https://doi.org/10.1103/PhysRevB.65.094101

    Article  ADS  Google Scholar 

  72. Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Identification of nanocrystalline media by acoustic spectroscopy methods. Accoust. Phys. 56, 588–596 (2010). https://doi.org/10.1134/S1063771010040251

    Article  ADS  Google Scholar 

  73. Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Acoustic identification of nanocrystalline media. J. Sound Vib. 322, 564–580 (2009)

    Article  ADS  Google Scholar 

  74. Vanin, G.A.: Gradient theory of elasticity. Mech. Solids 1, 46–53 (1999)

    Google Scholar 

  75. Ieşan, D., Quintanilla, R.: On chiral effects in strain gradient elasticity. Eur. J. Mech. A Solid 58, 233–246 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Rysaeva, L.K., Baimova, J.A., Lisovenko, D.S., Gorodtsov, V.A., Dmitriev, S.V.: Elastic properties of fullerites and diamond-like phases. Phys. Status Solidi B 256, 1800049 (2019). https://doi.org/10.1016/j.commatsci.2019.109355

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research was carried out under the financial support of the Russian Science Foundation (Grant No. 21-19-00813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Pavlov.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, I.S., Dmitriev, S.V., Vasiliev, A.A. et al. Models and auxetic characteristics of a simple cubic lattice of spherical particles. Continuum Mech. Thermodyn. 34, 1669–1685 (2022). https://doi.org/10.1007/s00161-022-01157-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01157-w

Keywords

Navigation