Skip to main content
Log in

Interaction of pressure swirl spray with cross-flow

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Sprays are exposed to ambient flow in most of their applications, which alters the spray behaviour. The understanding of spray performance in realistic conditions allows for nozzle improvements, process intensification, or emission reductions. The present paper investigates the pressure-swirl atomizer operating at three Reynolds numbers in the inlet ports (Re\(_{\mathrm{p}})\) 960, 1330 and 1880, subjected to low-turbulence cross-flow with aerodynamic Weber number (We) from 0 to 7.1. High-speed visualization and phase Doppler anemometry (PDA) captured the characteristic shape and trajectory of the spray, droplet dynamics, droplet collisions, and spatial droplet distributions. An empirical correlation for a mean spray trajectory prediction was developed for a wide range of flow parameters. An analytical model of the droplet trajectory was assembled and validated using PDA data. The model accurately predicts trajectories for droplets larger than 40 \(\upmu \)m. A mutual interaction of droplets was investigated. Elevated cross-flow velocity (v) increased the impact Weber number and the total droplet collision rate and enhanced the droplet mixing. A bag breakup regime was observed for the liquid to the air momentum ratio (q) lower than 300. The bag breakup modified the initial droplet velocity. The experiments imply the formation of a complicated vortex structure around the pressure swirl spray in cross-flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A :

Constant in the empirical equation

B :

Constant in the empirical equation

C :

Constant in the empirical equation

\(C_{\mathrm{d}}\) :

Drag coefficient of a liquid jet in cross-flow

\(C_{Ni,j}\) :

Droplet number concentration of i-th, j-th droplet group

\(d_{\mathrm{o}}\) :

Diameter of the discharge orifice

\(D_{\mathrm{p}}\) :

Hydraulic diameter of tangential inlet port

\(D_{i}\) :

Droplet diameter of i-th group

\(D_{j}\) :

Droplet diameter of j-th group

\(D_{10}\) :

Linear average value of all the drops in spray

\(D_{32}\) :

Sauter mean diameter

F :

Force on the liquid jet element

\(l_{0}\) :

Characteristic dimension

m :

Mass

\(m_{\mathrm{l}}\) :

Liquid flow rate trough exit orifice

Oh:

Ohnesorge number

\(P_{\mathrm{in}}\) :

Nozzle inlet pressure

q :

Liquid to air momentum ratio

\({\mathrm{Re}}_{\mathrm{o}}\) :

Reynolds number in exit orifice

\({\mathrm{Re}}_{\mathrm{p}}\) :

Reynolds number in tangential inlet ports

S :

Surface area of the liquid sheet

\(S_{o}\) :

Swirl number

t :

Time

\(t_{\mathrm{f}}\) :

Liquid film thickness

\(t_{Ti}\) :

Transition time of the i-the particle group through the measurement volume

\(t_{0}\) :

Characteristic time

u :

Velocity

\(u_{\mathrm{n}}\) :

Component of the cross-flow velocity normal to the liquid sheet surface

\(u_{\mathrm{p}}\) :

Liquid velocity at tangential inlet port

\(U_{\mathrm{rel}}\) :

Relative velocity between the droplet and cross-flow

v :

Cross-flow velocity

\(v_{\mathrm{rel}}\) :

Relative velocity of cross-flow velocity and liquid film velocity

\(v_{ai,j}\) :

Droplet axial velocity of i-th, j-th group

\(v_{i}\) :

Droplet velocity of i-th group

\(v_{j}\) :

Droplet velocity of j-th group

Vol:

Volume of measurement volume

\(v_{\mathrm{rel}}\) :

Relative velocity of colliding droplets

\(v_{ri,j}\) :

Droplet radial velocity of i-th, j-th group

We:

Aerodynamic Weber number

\({\mathrm{We}}_{aij}\) :

Collision Weber number in the axial direction for i-th and j-th droplet size group

\({\mathrm{We}}_{\mathrm{rel}}\) :

Relative Weber Number

\({\mathrm{We}}_{rij}\) :

Collision Weber number in the radial direction for i-th and j-th droplet size group

X :

Impact parameter

x :

Dimensionless impact parameter

\(x/d_{\mathrm{o}}\) :

Dimensionless horizontal distance from the nozzle tip

\(y/d_{\mathrm{o}}\) :

Dimensionless vertical distance from the nozzle tip

\(Z_{aij}\) :

Collision rate in the axial direction of i-th and j-th droplet size group

\(Z_{ij}\) :

Collision rate of i-th and j-th droplet size group

\(Z_{rij}\) :

Collision rate in the radial direction of i-th and j-th droplet size group

\(z/d_{\mathrm{o}}\) :

Dimensionless axial distance from the nozzle tip

\(\alpha \) :

Constant in the empirical equation 

\(\beta \) :

Constant in the empirical equation 

\(\gamma \) :

Constant in the empirical equation 

\(\varDelta \) :

Ratio of larger to smaller droplet

\(\delta \) :

Constant in the empirical equation 

\(\Delta t\) :

Measurement time duration

\(\varTheta \) :

Constant in the empirical equation 

\(\mu \) :

Liquid dynamic viscosity

\(\mu _{g}\) :

Air dynamic viscosity

\(\rho \) :

Liquid density

\(\rho _{\mathrm{AIR}}\) :

Density of air

\(\sigma \) :

Surface tension of water droplet in air

References

  1. Nasr, G.G., Yule, A.J., Bendig, L.: Industrial Sprays and Atomization: Design, Analysis and Applications. Springer, London (2002)

    Book  Google Scholar 

  2. Wang, K., Hu, T., Hassabou, A.H., Spinnler, M., Polifke, W.: Analyzing and modeling the dynamic thermal behaviors of direct contact condensers packed with PCM spheres. Contin. Mech. Thermodyn. 25, 23–41 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Lee, S., Kim, W., Yoon, W.: Spray formation by a swirl spray jet in low speed cross-flow. J. Mech. Sci. Technol. 24(2), 559–568 (2010)

    Article  Google Scholar 

  4. Kim, J., Reitz, R., Park, S.: Improvements in the performance and pollutant emissions for stoichiometric diesel combustion engines using a two-spray-angle nozzle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 224, 1113–1122 (2010)

    Article  Google Scholar 

  5. Boutazakhti, M., Thomson, M., Lightstone, M.: The effect of jet mixing on the combustion efficiency of a hot fuel-rich cross-flow. Combust. Sci. Technol. 163, 211–228 (2001)

    Article  Google Scholar 

  6. Wenneker, M., van de Zande, J.: Drift reduction in orchard spraying using a cross flow sprayer equipped with reflection shields (Wanner) and air injection nozzles. Agric. Eng. Int. 10, 1–10 (2008)

    Google Scholar 

  7. Ali, M., Qi, Y., Mehboob, K.: A review of performance of a venturi scrubber. Res. J. Appl. Sci. Eng. Technol. 4, 3811–3818 (2012)

    Google Scholar 

  8. Mahesh, K.: The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 45(1), 379–407 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Coletti, F., Elkins, C.J., Eaton, J.K.: An inclined jet in crossflow under the effect of streamwise pressure gradients. Exp. Fluids 54(9), 1589 (2013)

    Article  Google Scholar 

  10. Maly, M., Sapik, M., Cejpek, O., Wigley, G., Katolicky, J., Jedelsky, J.: Effect of spill orifice geometry on spray and control characteristics of spill-return pressure-swirl atomizers. Exp. Therm. Fluid Sci. 106, 159–170 (2019)

    Article  Google Scholar 

  11. Lynch, A., Batchelor, R., Kiel, B., Miller, J., Gord, J., Reeder, M.: Spray characteristics of a pressure-swirl fuel injector subjected to a crossflow and a coflow. At. Sprays 21, 625–643 (2011)

    Article  Google Scholar 

  12. Surya Prakash, R., Gadgil, H., Raghunandan, B.N.: Breakup processes of pressure swirl spray in gaseous cross-flow. Int. J. Multiph. Flow 66, 79–91 (2014)

    Article  Google Scholar 

  13. Zhang, H., Bai, B., Liu, L., Sun, H., Yan, J.: Droplet dispersion characteristics of the hollow cone sprays in crossflow. Exp. Therm. Fluid Sci. 45, 25–33 (2013)

    Article  Google Scholar 

  14. Ragucci, R., Bellofiore, A., Cavaliere, A.: Trajectory and momentum coherence breakdown of a liquid jet in high-density air cross-flow. At. Sprays 17, 47–70 (2007)

    Article  Google Scholar 

  15. Karagozian, A.R.: The jet in crossflow. Phys. Fluids 26(10), 101303 (2014). https://doi.org/10.1063/1.4895900

    Article  ADS  Google Scholar 

  16. Clift, R., Grace, J., Weber, M.: Bubbles, Drops, and Particles, pp. 344–345. Dover Pub. Inc., New York (2005)

    Google Scholar 

  17. Diemuodeke, O., Sher, I.: Turbulence Induced Droplet Breakup (2013)

  18. Orme, M.: Experiments on droplet collisions, bounce, coalescence and disruption. Prog. Energy Combust. Sci. 23(1), 65–79 (1997)

    Article  Google Scholar 

  19. Santolaya, J.L., García, J.A., Calvo, E., Cerecedo, L.M.: Effects of droplet collision phenomena on the development of pressure swirl sprays. Int. J. Multiph. Flow 56, 160–171 (2013)

    Article  Google Scholar 

  20. Bai, B.-F., Zhang, H.-B., Liu, L., Sun, H.-J.: Experimental study on turbulent mixing of spray droplets in crossflow. Exp. Therm. Fluid Sci. 33(6), 1012–1020 (2009)

    Article  Google Scholar 

  21. Jedelsky, J., Maly, M., Pinto del Corral, N., Wigley, G., Janackova, L., Jicha, M.: Air–liquid interactions in a pressure-swirl spray. Int. J. Heat Mass Transf. 121, 788–804 (2018)

    Article  Google Scholar 

  22. Deshpande, S.: Characteristics of hollow cone sprays in crossflow. At. Sprays 21, 349–361 (2011)

    Article  Google Scholar 

  23. Sallam, K., Ng, C., Sankarakrishnan, R., Aalburg, C., Lee, K.: Breakup of turbulent and non-turbulent liquid jets in gaseous crossflows. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics (2006)

  24. Decent, S.P.: On the instability of microjets. Contin. Mech. Thermodyn. 17, 525–543 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Jaberi, A., Tadjfar, M.: Visualization of two-dimensional liquid sheets issued into subsonic gaseous crossflow. J. Vis. 23(4), 605–624 (2020)

    Article  Google Scholar 

  26. Arifuzzaman, M., Mashud, M.: Design construction and performance test of a low cost subsonic wind tunnel. IOSR J. Eng. 02, 83–92 (2012)

    Article  Google Scholar 

  27. Alfred Sunny, K., Manoj Kumar, N., Mona, H., Rai, R.: Development and performance investigation of supersonic blow-down wind tunnel. Int. J. Earth Sci. Eng. 10, 18–23 (2017)

    Google Scholar 

  28. Guo, M., Nishida, K., Ogata, Y., Wu, C., Fan, Q.: Experimental study on fuel spray characteristics under atmospheric and pressurized cross-flow conditions, second report: Spray distortion, spray area, and spray volume. Fuel 206, 401–408 (2017)

    Article  Google Scholar 

  29. Eslamian, M., Amighi, A., Ashgriz, N.: Atomization of liquid jet in high-pressure and high-temperature subsonic crossflow. AIAA J. 52, 1374–1385 (2014)

    Article  ADS  Google Scholar 

  30. Bunce, K., Lee, J., Santavicca, D.: Characterization of liquid jets-in-crossflow under high temperature, high velocity non-oscillating and oscillating flow conditions. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics (2006)

  31. Chinn, J.: The Numerics of the Swirl Atomizer. Presented at the ILASS 2008. Como Lake, Italy (2008)

  32. Lefebvre, A.H.: Atomization and Sprays. Hemisphere Pub. Corp, New York (1989)

    Google Scholar 

  33. Rajaratnam, J.: Jets in cross-flow. Dev. Water Sci. 5, 184–210 (1976)

    Google Scholar 

  34. Marzbali, M.: Penetration of circular and elliptical liquid jets into gaseous crossflow: a combined theoretical and numerical study (2011)

  35. No, S.-Y.: A review on empirical correlations for jet/spray trajectory of liquid jet in uniform cross flow. Int. J. Spray Combust. Dyn. 7(4), 283–313 (2015)

    Article  Google Scholar 

  36. Song, J., Ahn, K., Kim, M.-k., Yoon, Y.: Spray plume characteristics of liquid jets in subsonic crossflows. In: 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. American Institute of Aeronautics and Astronautics (2007)

  37. Flemmer, R.L.C., Banks, C.L.: On the drag coefficient of a sphere. Powder Technol. 48(3), 217–221 (1986)

    Article  Google Scholar 

  38. Turton, R., Levenspiel, O.: A short note on the drag correlation for spheres. Powder Technol. 47(1), 83–86 (1986)

    Article  Google Scholar 

  39. Lane, W.R.: Shatter of drops in streams of air. Ind. Eng. Chem. 43(6), 1312–1317 (1951)

    Article  Google Scholar 

  40. Ashgriz, N., Poo, J.Y.: Coalescence and separation in binary collisions of liquid drops. J. Fluid Mech. 221, 183–204 (1990)

    Article  ADS  Google Scholar 

  41. Aísa, L., Garcia, J.A., Cerecedo, L.M., Palacín, I.G., Calvo, E.: Particle concentration and local mass flux measurements in two-phase flows with PDA. Application to a study on the dispersion of spherical particles in a turbulent air jet. Int. J. Multiph. Flow 28(2), 301–324 (2002)

    Article  MATH  Google Scholar 

  42. Calvo, E., García, J.A., García, I., Aísa, L.A.: Errors analysis in the evaluation of particle concentration by PDA on a turbulent two-phase jet: application for cross section and transit time methods. Exp. Fluids 47(3), 489–508 (2009)

    Article  Google Scholar 

  43. Arkhipov, V.A., Vasenin, I.M., Trofimov, V.F.: Stability of colliding drops of ideal liquid. J. Appl. Mech. Tech. Phys. 24(3), 371–373 (1983)

    Article  ADS  Google Scholar 

  44. Thielicke, W., Sonntag, R.: Particle image velocimetry for MATLAB: accuracy and enhanced algorithms in PIVlab. J. Open Res. Softw. 9(1), 12 (2021). https://doi.org/10.5334/jors.334

    Article  Google Scholar 

  45. Thielicke, W., Stamhuis, E.J.: PIVlab—towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2(1), e30 (2014). https://doi.org/10.5334/jors.bl

    Article  Google Scholar 

  46. Thielicke, W.: The Flapping Flight of Birds: Analysis and Application (2014). https://doi.org/10.13140/RG.2.2.18656.94728

Download references

Acknowledgements

The authors acknowledge the financial support from the Project No. LTAIN19044 funded from the program INTER EXCELLENCE (INTER–ACTION) by the Ministry of Education, Youth and Sports of the Czech Republic, Project No. GA18-15839S funded by the Czech Science Foundation and from No. FSI-S-20-6295 founded by Faculty of Mechanical Engineering, Brno University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Cejpek.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cejpek, O., Maly, M., Slama, J. et al. Interaction of pressure swirl spray with cross-flow. Continuum Mech. Thermodyn. 34, 1497–1515 (2022). https://doi.org/10.1007/s00161-022-01142-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01142-3

Keywords

Navigation