Skip to main content
Log in

Assessment of Droplet Breakup Models for Spray Flow Simulations

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In this paper we examine droplet behavior and macroscopic atomization characteristics of a non-reactive liquid spray via a series of large-eddy simulations. In our numerical study we examine three popular models for spray atomization, namely, the Taylor analogy breakup (TAB), Reitz–Diwakar and Pilch–Erdman models, and compare their predictions against available experimental data. According to our simulations, and for the flow conditions considered herein, the TAB model exhibits a slightly better performance than the other two models do. Further, since the TAB model is known to underestimate the effect of disruptive drag forces, we present a modification to it and assess its predictive capacity. More specifically, according to the numerical test presented herein, our modification has the potential to improve the accuracy in the numerical computation of important global quantities of the spray, such as the liquid and vapor penetration distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alderliesten, M.: Mean particle diameters. Part VII. The Rosin–Rammler size distribution: physical and mathematical properties and relationships to moment-ratio defined mean particle diameters. Part. Part. Syst. Charact. 30(3), 244–257 (2013)

    Google Scholar 

  • Amsden, A.A., O’Rourke, P.J., Butler, T.D.: KIVA-II: a computer program for chemically reactive flows with sprays. Los Alamos National Lab. REP. LA-11560-MS DE89012805 (1989)

  • Beatrice, C., Belardini, P., Berteli, C., Camerotti, M., Cirillo, N.C.: Fuel jet models for multidimensional diesel combustion calculation: an update. SAE Int. J. Engines 104, 194–204 (1995)

    Google Scholar 

  • Bianchi, G.M., Pelloni, P.: Modeling the diesel fuel spray breakup by using a hybrid model. In: SAE technical paper series. SAE International (1999)

  • Brodkey, R.S., Addison, W.: The phenomena of fluid motions. J. Fluid Mech. 34, 821–822 (1968)

    Google Scholar 

  • Burcat, A., Ruscic, B.: Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables). Argonne National Laboratory Technical Report ANL-05/20 and Technion—Israel Inst. of Tech. Report TAE 960

  • Chai, X., Mahesh, K.: Dynamic k-equation model for large-eddy simulation of compressible flows. J. Fluid Mech. 699, 385–413 (2012)

    MathSciNet  MATH  Google Scholar 

  • Dukowicz, J.K.: A particle-fluid numerical model for liquid sprays. J. Comput. Phys. 35, 229–252 (1980)

    MathSciNet  MATH  Google Scholar 

  • ECN: Sprays A & B, Engine Combustion Network (2018). https://ecn.sandia.gov/diesel-spray-combustion/computational-method/modeling-standards/. Accessed 1 Apr 2020

  • ECN: Sprays A & B, Engine Combustion Network (2019). https://ecn.sandia.gov/diesel-spray-combustion/target-condition/spray-ab/. Accessed 1 Apr 2020

  • Elkotb, M.M.: Fuel atomization for spray modelling. Prog. Energy Combust. Sci. 8, 61–91 (1982)

    Google Scholar 

  • Faeth, G.M., Hsiang, L.P., Wu, P.K.: Structure and breakup properties of sprays. Int. J. Multiphas. Flow 21, 99–127 (1995)

    MATH  Google Scholar 

  • Favre, A.: Turbulence: space–time statistical properties and behavior in supersonic flows. Phys. Fluids 26, 2851–2863 (1983)

    MATH  Google Scholar 

  • Greifzu, F., Kratzsch, C., Forgber, T., Lindner, F., Schwarze, R.: Assessment of particle-tracking models for dispersed particle-laden flows implemented in openfoam and ansys fluent. Eng. Appl. Comput. Fluid Mech. 10(1), 30–43 (2016)

    Google Scholar 

  • Grosshans, H., Berrocal, E., Kristensson, E., Szász, R.: Prediction and measurement of the local extinction coefficient in sprays for 3D simulation/experiment data comparison. Int. J. Multiphas. Flow 72, 218–232 (2015)

    Google Scholar 

  • Grosshans, H., Griesing, M., Mönckedieck, M., Hellwig, T., Walther, B., Gopireddy, S.R., Sedelmayer, R., Pauer, W., Moritz, H.U., Urbanetz, N.A., Gutheil, E.: Numerical and experimental study of the drying of bi-component droplets under various drying conditions. Int. J. Heat Mass Transf. 96, 97–109 (2016)

    Google Scholar 

  • Hsiang, L.P., Faeth, G.M.: Near-limit drop deformation and secondary breakup. Int. J. Multiphas. Flow 18, 635–652 (1992)

    MATH  Google Scholar 

  • Ibrahim, A.E., Yang, H.Q., Przekwas, J.A.: Modeling of spray droplets deformation and breakup. J. Propul. Power 9, 651–654 (1993)

    Google Scholar 

  • IFPEN: IFPEN experimental data (2019). https://ecn.sandia.gov/ecn-data-search/. Accessed 1 Apr 2020

  • Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62(1), 40–65 (1986)

    MathSciNet  MATH  Google Scholar 

  • Lacaze, G., Misdariis, A., Ruiz, A., Oefelein, J.C.: Analysis of high-pressure Diesel fuel injection processes using LES with real-fluid thermodynamics and transport. Proc. Combust. Inst. 35(2), 1603–1611 (2015)

    Google Scholar 

  • Lamb, H.: Hydrodynamics, 6th edn. Dover, Mineola (1945)

    MATH  Google Scholar 

  • Lefebvre, A., McDonell, V.: Atomization and Sprays, 2nd edn. CRC Press, Cambridge (2017)

    Google Scholar 

  • Liu, A.B., Mather, D., Reitz, R.D.: Modeling the effects of drop drag and breakup on fuel sprays. Technical Paper Series 930072, (1993)

  • Matheis, J., Hickel, S.: Multi-component vapor-liquid equilibrium model for LES of high-pressure fuel injection and application to ECN spray A. Int. J. Multiph. Flow 99, 294–311 (2018)

    MathSciNet  Google Scholar 

  • Matysiak, A.: Euler–Lagrange Verfahren zur Simulation tropfenbeladener Strömung in einem Verdichtergitter. Ph.D. thesis, Helmut-Schmidt Universität, Hamburg (2007)

  • Moin, P., Squires, K., Cabot, W., Lee, S.: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A: Fluid Dyn. 3(11), 2746–2757 (1991)

    MATH  Google Scholar 

  • Nicholls, J.A.: Stream and droplet breakup by shock waves. NASA-SP-194 Technical Report, pp. 126–128 (1972)

  • Nicholson, L., Fang, X., Camm, J., Davy, M., Richardson, D.: Comparison of transient diesel spray break-up between two computational fluid dynamics codes. SAE International (2018)

  • O’Rourke, P.J., Amsden, A.A.: The TAB method for numerical calculation of spray droplet breakup. In: SAE Technical Paper Series, 872089. SAE International (1987)

  • Park, J.H., Yoon, Y., Hwang, S.S.: Improved tab model for prediction of spray droplet deformation and breakup. At. Spray 12(4), 387–401 (2002)

    Google Scholar 

  • Pickett, L.M., Abraham, J.P.: Computed and measured fuel vapor distribution in a diesel spray. At. Spray 20(3), 241–250 (2010)

    Google Scholar 

  • Pilch, M.: Acceleration induced fragmentation of liquid drops. Ph.D. thesis, Univ. of Virginia (1981)

  • Pilch, M., Erdman, C.A.: Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int. J. Multiph. Flow 13, 741–757 (1987)

    Google Scholar 

  • Ranz, W.E., Marshall, W.R.: Evaporation from drops: part I. Chem. Eng. Prog. 48(3), 141–146 (1952a)

    Google Scholar 

  • Ranz, W.E., Marshall, W.R.: Evaporation from drops: part II. Chem. Eng. Prog. 48(3), 173–180 (1952b)

    Google Scholar 

  • Reinhardt, Y., Kleiser, L.: Validation of particle-laden turbulent flow simulations including turbulence modulation. J. Fluids Eng. 137(7), 071303 (2015)

    Google Scholar 

  • Reitz, R., Bracco, V.F.: Mechanisms of breakup of round liquid jets. Encycl. Fluid Mech. 3, 233–249 (1986)

    Google Scholar 

  • Reitz, R.D., Diwakar, R.: Structure of high-pressure fuel sprays. In: SAE Technical Paper Series, 870598. SAE International (1987)

  • Sirignano, W.A.: Fluid Dynamics and Transport of Droplets and Sprays, 2nd edn. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  • Solsvik, J., Skjervold, V.T., Han, L., Luo, H., Jakobsen, H.A.: A theoretical study on drop breakup modeling in turbulent flows: the inertial subrange versus the entire spectrum of isotropic turbulence. Chem. Eng. Sci. 149, 249–265 (2016)

    Google Scholar 

  • Tanner, F.X.: Liquid jet atomization and droplet breakup modeling of non-evaporating diesel fuel sprays. In: SAE Technical Paper Series, 970050. SAE International (1997)

  • Vesilind, P.A.: The Rosin–Rammler particle size distribution. Resour. Recovery Conserv. 5, 275–277 (1980)

    Google Scholar 

  • Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12, 620–631 (1998)

    Google Scholar 

  • Wierzba, A.: Deformation and breakup of liquid drops in a gas stream at nearly critical Weber numbers. Exp. Fluids 9(1), 59–64 (1990)

    Google Scholar 

  • Wu, P.K., Faeth, G.M.: Aerodynamic effects on primary breakup of turbulent liquids. At. Spray 3, 265–289 (1993)

    Google Scholar 

  • Yang, S., Yi, P., Habchi, C.: Real-fluid injection modeling and LES simulation of the ECN spray A injector using a fully compressible two-phase flow approach. Int. J. Multiph. Flow 122, 103–145 (2020)

    Google Scholar 

  • Yoon, S.S., Hewson, J., DesJardin, P.E., Glaze, D., Black, A.R., Skaggs, R.R.: Numerical modeling and experimental measurements of a high speed solid-cone water spray for use in fire suppression applications. Int. J. Multiph. Flow 30, 1369–1388 (2004)

    MATH  Google Scholar 

  • Yoshizawa, A.: Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys. Fluids 29, 2152–2164 (1987)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges the financial support of the National Research Fund of Belgium (FNRS) in the form of the ERANET BiofCFD program.

Funding

This study was funded by FNRS (Grant No. R.50.04.17.F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Papalexandris.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sula, C., Grosshans, H. & Papalexandris, M.V. Assessment of Droplet Breakup Models for Spray Flow Simulations. Flow Turbulence Combust 105, 889–914 (2020). https://doi.org/10.1007/s10494-020-00139-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-020-00139-9

Keywords

Navigation