Skip to main content
Log in

Statistical mechanics of rate-independent stick-slip on a corrugated surface composed of parabolic wells

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The stick-slip phenomenon, at the basis of friction, is crucial for several applications ranging from nanotechnology and biophysics to mechanics and geology. Deep understanding of friction mechanisms and, in particular, the methodologies for its reduction must be sought in its nanoscopic nature, where atomic interactions and stick-slip processes play a crucial role. At this scale, thermal fluctuations clearly have a major effect on the physics of the problem. Hence, we develop here a theory for rate-independent stick-slip, based on equilibrium statistical mechanics. In particular, we introduce suitably modified Prandtl–Tomlinson and Frenkel–Kontorova models in order to study the system with one particle and the chain with N particles, respectively. The adopted corrugated substrate is composed of a sequence of quadratic wells. Interestingly, the calculation of corresponding partition functions shows a conceptual link with the theory of Jacobi and Riemann theta functions, allowing an efficient determination of the average static frictional force and other relevant quantities. We show some applications including the study of structural lubricity and thermolubricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Gao, J., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., Landman, U.: Frictional forces and Amontons’ law: from the molecular to the macroscopic scale. J. Phys. Chem. B 108, 3410–3425 (2004)

    Article  Google Scholar 

  2. Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430, 525–528 (2004)

    Article  ADS  Google Scholar 

  3. Vanossi, A., Manini, N., Urbakh, M., Zapperi, S., Tosatti, E.: Colloquium: modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529–552 (2013)

    Article  ADS  Google Scholar 

  4. Vakis, A.I., Yastrebov, V.A., Scheibert, J., Nicola, L., Dini, D., Minfray, C., Almqvist, A., Paggi, M., Lee, S., Limbert, G., Molinari, J. F., Anciaux, G., Aghababaei, R., Echeverri Restrepo, S., Papangelo, A., Cammarata, A., Nicolini, P., Putignano, C., Carbone, G., Stupkiewicz, S., Lengiewicz, J., Costagliola, G., Bosia, F., Guarino, R., Pugno, N.M., Müser, M. H., Ciavarella, M.: Modeling and simulation in tribology across scales: an overview. Tribol. Int. 125, 169–199 (2018)

  5. Ternes, M., Lutz, C.P., Hirjibehedin, C.F., Giessibl, F.J., Heinrich, A.J.: The force needed to move an atom on a surface. Science 319, 1066–1069 (2008)

    Article  ADS  Google Scholar 

  6. Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D: Appl. Phys. 41, 123001 (2008)

    Article  ADS  Google Scholar 

  7. Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116 (2009)

    Article  ADS  Google Scholar 

  8. Krylov, S.Y., Frenken, J.W.M.: The physics of atomic-scale friction: basic considerations and open questions. Phys. Status Solidi 251, 711–736 (2014)

    Article  Google Scholar 

  9. Manini, N., Mistura, G., Paolicelli, G., Tosatti, E., Vanossi, A.: Current trends in the physics of nanoscale friction. Adv. Phys.: X 2, 569–590 (2017)

    Google Scholar 

  10. Bormuth, V., Varga, V., Howard, J., Schäffer, E.: Protein friction limits diffusive and directed movements of Kinesin motors on microtubules. Science 325, 870 (2009)

    Article  ADS  Google Scholar 

  11. Sahli, R., Pallares, G., Ducottet, C., Ben Ali, I. E., Al Akhrass, S., Guibert, M., Scheibert, J.: Evolution of real contact area under shear and the value of static friction of soft materials. PNAS 115, 471–476 (2018)

  12. Sens, P.: Stick-slip model for actin-driven cell protrusions, cell polarization, and crawling. PNAS 117, 24670–24678 (2020)

    Article  ADS  Google Scholar 

  13. Liamas, E., Connell, S.D., Ramakrishna, S.N., Sarkar, A.: Probing the frictional properties of soft materials at the nanoscale. Nanoscale 12, 2292 (2020)

    Article  Google Scholar 

  14. Holmberg, K., Matthews, A., Ronkainen, H.: Coatings tribology—contact mechanisms and surface design. Tribol. Int. 31, 107–120 (1998)

    Article  Google Scholar 

  15. Popov, V.L.: Contact Mechanics and Friction: Physical Principles and Applications. Springer-Verlag, Berlin (2010)

    Book  MATH  Google Scholar 

  16. Holmberg, K., Erdemir, A.: Influence of tribology on global energy consumption, costs and emissions. Friction 5, 263–284 (2017)

    Article  Google Scholar 

  17. Białas, M., Maciejewski, J., Kucharski, S.: Friction coefficient of solid lubricating coating as a function of contact pressure: experimental results and microscale modeling. Continuum Mech. Thermodyn. 33, 1733–1745 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  18. Scholz, C.H.: Earthquakes and friction laws. Nature (London) 391, 37 (1998)

  19. Marone, C.: The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle. Nature 391, 69 (1998)

    Article  ADS  Google Scholar 

  20. Daub, E.G., Carlson, J.M.: Friction, Fracture, and Earthquakes. Ann. Rev. Condens. Matter Phys. 1, 397–418 (2010)

    Article  ADS  Google Scholar 

  21. Fried, E.: Energy release, friction, and supplemental relations at phase interfaces. Continuum Mech. Thermodyn. 7, 111–121 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Amitrano, D., Grasso, J.R., Hantz, D.: From diffuse to localised damage through elastic interaction. Geophys. Res. Lett. 26, 2109–2112 (1999)

    Article  ADS  Google Scholar 

  23. Gerde, E., Marder, M.: Friction and fracture. Nature 413, 285 (2001)

    Article  ADS  Google Scholar 

  24. Kresse, O., Truskinovsky, L.: Lattice friction for crystalline defects: from dislocations to cracks. J. Mech. Phys. Sol. 52, 2521–2543 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Gimbert, F., Amitrano, D., Weiss, J.: Crossover from quasi-static to dense flow regime in compressed frictional granular media. EPL 104, 46001 (2013)

    Article  ADS  Google Scholar 

  26. Biscari, P., Urbano, M.F., Zanzottera, A., Zanzotto, G.: Intermittency in crystal plasticity informed by lattice symmetry. J. Elastic. 123, 85–96 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Karimi, K., Amitrano, D., Weiss, J.: From plastic flow to brittle fracture: role of microscopic friction in amorphous solids. Phys. Rev. E 100, 012908 (2019)

    Article  ADS  Google Scholar 

  28. Gorbushin, N., Mishuris, G., Truskinovsky, L.: Frictionless motion of lattice defects. Phys. Rev. Lett. 125, 195502 (2020)

    Article  ADS  Google Scholar 

  29. Dowson, D.: History of Tribology. Wiley, New York (1998)

    Google Scholar 

  30. de Geus, T.W.J., Popovic, M., Ji, W., Rosso, A., Wyart, M.: How collective asperity detachments nucleate slip at frictional interfaces. PNAS 116, 23977–23983 (2019)

    Article  ADS  Google Scholar 

  31. Jacobs, T.D.B., Martini, A.: Measuring and understanding contact area at the nanoscale: a review. Appl. Mech. Rev. 69, 060802 (2017)

    Article  Google Scholar 

  32. Binnig, G., Quate, C.F., Gerber, C.: Atomic Force Microscope. Phys. Rev. Lett. 56, 930 (1986)

    Article  ADS  Google Scholar 

  33. Israelachvili, J.N.: Adhesion forces between surfaces in liquids and condensable vapours. Surf. Sci. Rep. 14, 109 (1992)

    Article  ADS  Google Scholar 

  34. Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol. A 31, 030801 (2013)

    Article  Google Scholar 

  35. Bonelli, F., Manini, N., Cadelano, E., Colombo, L.: Atomistic simulations of the sliding friction of graphene flakes. Eur. Phys. J. B 70, 449–459 (2009)

    Article  ADS  Google Scholar 

  36. Luan, B.Q., Hyun, S., Molinari, J.F., Bernstein, N., Robbins, M.O.: Multiscale modeling of two-dimensional contacts. Phys. Rev. E 74, 046710 (2006)

    Article  ADS  Google Scholar 

  37. Wolloch, M., Levita, G., Restuccia, P., Righi, M.C.: Interfacial charge density and its connection to adhesion and frictional forces. Phys. Rev. Lett. 121, 026804 (2018)

    Article  ADS  Google Scholar 

  38. Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Angew. Math. Mech. 8, 85 (1928)

    Article  MATH  Google Scholar 

  39. Tomlinson, G.A.: A molecular theory of friction. Philos. Mag. 7, 905 (1929)

    Article  Google Scholar 

  40. Popov, V.L., Gray, J.A.T.: Prandtl–Tomlinson model: history and applications in friction, plasticity, and nanotechnologies. Z. Angew. Math. Mech. 92, 683–708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schwarz, U.D., Hölscher, H.: Exploring and Explaining Friction with the Prandtl-Tomlinson Model. ACS Nano 10, 38–41 (2016)

    Article  Google Scholar 

  42. Sang, Y., Dubé, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. Lett. 87, 174301 (2001)

    Article  ADS  Google Scholar 

  43. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91, 084502 (2003)

    Article  ADS  Google Scholar 

  44. Krylov, SYu., Jinesh, K.B., Valk, H., Dienwiebel, M., Frenken, J.W.M.: Thermally induced suppression of friction at the atomic scale. Phys. Rev. E 71, 065101(R) (2005)

    Article  ADS  Google Scholar 

  45. Yu Krylov, S., Frenken, J.W.M.: The crucial role of temperature in atomic scale friction. J. Phys.: Condens. Matter 20, 354003 (2008)

  46. Jinesh, K.B., Krylov, SYu., Valk, H., Dienwiebel, M., Frenken, J.W.M.: Thermolubricity in atomic-scale friction. Phys. Rev. B 78, 155440 (2008)

    Article  ADS  Google Scholar 

  47. Jansen, L., Hölscher, H., Fuchs, H., Schirmeisen, A.: Temperature Dependence of Atomic-Scale Stick-Slip Friction. Phys. Rev. Lett. 104, 256101 (2010)

    Article  ADS  Google Scholar 

  48. Perez, D., Dong, Y., Martini, A., Voter, A.F.: Rate theory description of atomic stick-slip friction. Phys. Rev. B 81, 245415 (2010)

    Article  ADS  Google Scholar 

  49. Martin, H.: Müser, Velocity dependence of kinetic friction in the Prandtl-Tomlinson model. Phys. Rev. B 84, 125419 (2011)

    Article  ADS  Google Scholar 

  50. Dong, Y., Vadakkepatt, A., Martini, A.: Analytical Models for Atomic Friction. Tribol. Lett. 44, 367–386 (2011)

    Article  Google Scholar 

  51. Torche, P.C., Polcar, T., Hovorka, O.: Thermodynamic aspects of nanoscale friction. Phys. Rev. B 100, 125431 (2019)

    Article  ADS  Google Scholar 

  52. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92, 134301 (2004)

    Article  ADS  Google Scholar 

  53. Dehlinger, U.: Zur Theorie der Rekristallisation reiner Metalle. Ann. Phys. (Leipzig) 394, 749 (1929)

  54. Kontorova, T.A., Frenkel, Ya.. I.: On the theory of the plastic deformation and twinning. Zh. Eksp. Teor. Fiz. 8, 89–95 (1938)

    MATH  Google Scholar 

  55. Kontorova, T. A., Frenkel, Ya. I.: On the theory of plastic deformation and twinning. II. Zh. Eksp. Teor. Fiz. 8, 1340–1348 (1938)

  56. Kontorova, T.A., Frenkel, Y.I.: On the theory of plastic deformation and twinning. III. Zh. Eksp. Teor. Fiz. 8, 1349–1358 (1938)

  57. Pokrovskij, V.L., Talapov, A.L.: Theory of Incommensurate Crystals. Harwood Academic Publishers, New York (1984)

    Google Scholar 

  58. Braun, O.M., Kivshar, Yu.S.: Nonlinear dynamics of the Frenkel–Kontorova model. Phys. Rep. 306, 1–108 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  59. Braun, O.M., Kivshar, Yu.S.: The Frenkel–Kontorova Model: Concepts, Methods, and Applications. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  60. Bour, E.: Théorie de la déformation des surfaces. Journal de l’École Impériale Polytechnique 19, 1–48 (1862)

    Google Scholar 

  61. Peierls, R.E.: The size of a dislocation. Proc. Phys. Soc. 52, 34 (1940)

    Article  ADS  Google Scholar 

  62. Nabarro, F.R.N.: Dislocations in a simple cubic lattice. Proc. Phys. Soc. 59, 256 (1947)

    Article  ADS  Google Scholar 

  63. Hirthand, J.P., Lothe, J.: Theory of Dislocations. Wiley, New York (1982)

    Google Scholar 

  64. Aubry, S.: The twist map, the extended Frenkel–Kontorova model and the devil’s staircase. Phys. D 7, 240–258 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  65. Aubry, S.: Devil’s staircase and order without periodicity in classical condensed matter. J. Physique 44, 147–162 (1983)

    Article  MathSciNet  Google Scholar 

  66. Peyrard, M., Aubry, S.: Critical behaviour at the transition by breaking of analyticity in the discrete Frenkel-Kontorova model. J. Phys. C: Solid State Phys. 16, 1593–1608 (1983)

    Article  ADS  Google Scholar 

  67. Biham, O., Mukamel, D.: Global universality in the Frenkel–Kontorova model. Phys. Rev. A 39, 5326–5335 (1989)

    Article  ADS  Google Scholar 

  68. Braiman, Y., Baumgarten, J., Jortner, J., Klafter, J.: Symmetry-breaking transition in finite Frenkel–Kontorova chains. Phys. Rev. Lett. 65, 2398 (1990)

    Article  ADS  Google Scholar 

  69. Sharma, S.R., Bergersen, B., Joos, B.: Aubry transition in a finite modulated chain. Phys. Rev. B 29, 6335 (1984)

    Article  ADS  Google Scholar 

  70. Pruttivarasin, T., Ramm, M., Talukdar, I., Kreuter, A., Häffner, H.: Trapped ions in optical lattices for probingoscillator chain models. New J. Phys. 13, 075012 (2011)

    Article  ADS  Google Scholar 

  71. Benassi, A., Vanossi, A., Tosatti, E.: Nanofriction in cold ion traps. Nat. Comm. 2, 236 (2011)

    Article  ADS  Google Scholar 

  72. Bylinskii, A., Gangloff, D., Counts, I., Vuletić, V.: Observation of Aubry-type transition in finite atom chains via friction. Nat. Mat. 15, 717 (2016)

    Article  Google Scholar 

  73. Kiethe, J., Nigmatullin, R., Kalincev, D., Schmirander, T., Mehlstäubler, T.E.: Probing nanofriction and Aubry-type signatures in a finite self-organized system. Nat. Commun. 8, 15364 (2017)

    Article  ADS  Google Scholar 

  74. Gangloff, D.A., Bylinskii, A., Vuletić, V.: Kinks and nanofriction: structural phases in few-atom chains. Phys. Rev. Res. 2, 013380 (2020)

    Article  Google Scholar 

  75. Brazda, T., Silva, A., Manini, N., Vanossi, A., Guerra, R., Tosatti, E., Bechinger, C.: Experimental Observation of the Aubry Transition in Two-Dimensional Colloidal Monolayers. Phys. Rev. X 8, 011050 (2018)

    Google Scholar 

  76. Rosenberg, R.: Why Is Ice Slippery? Phys. Today 58, 50–55 (2005)

    Article  ADS  Google Scholar 

  77. Mabuchi, K., Tanaka, K., Uchijima, D., Sakai, R.: Frictional coefficient under banana skin. Tribol. Online 7, 147–151 (2012)

    Article  Google Scholar 

  78. Baykara, M.Z., Vazirisereshk, M.R., Martini, A.: Emerging superlubricity: a review of the state of the art and perspectives on future research. Appl. Phys. Rev. 5, 041102 (2018)

    Article  ADS  Google Scholar 

  79. Kumar, A.: Advancements in emerging superlubricity: A review of the atomistic models, simulation techniques and their applications to explore the state of ultra-low friction. Materials Today: Proceedings 42, 884–892 (2021)

    Google Scholar 

  80. Hirano, M., Shinjo, K.: Atomistic locking and friction. Phys. Rev. B 41, 11837 (1990)

    Article  ADS  Google Scholar 

  81. Shinjo, K., Hirano, M.: Dynamics of friction: superlubric state. Surf. Sci. 283, 473 (1993)

    Article  ADS  Google Scholar 

  82. Muser, M.H.: Structural lubricity: Role of dimension and symmetry. Europhys. Lett. 66, 97 (2004)

    Article  ADS  Google Scholar 

  83. Hirano, M., Shinjo, K., Kaneko, R., Murata, Y.: Observation of Superlubricity by Scanning Tunneling Microscopy. Phys. Rev. Lett. 78, 1448 (1997)

    Article  ADS  Google Scholar 

  84. Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of Graphite. Phys. Rev. Lett. 92, 126101 (2004)

    Article  ADS  Google Scholar 

  85. Koren, E., Lörtscher, E., Rawlings, C., Knoll, A.W., Duerig, U.: Adhesion and friction in mesoscopic graphite contacts. Science 348, 679 (2015)

    Article  ADS  Google Scholar 

  86. Kawai, S., Benassi, A., Gnecco, E., Soede, H., Pawlak, R., Feng, X., Muellen, K., Passerone, D., Pignedoli, C.A., Ruffieux, P., Fasel, R., Meyer, E.: Sup erlubricity of graphene nanoribbons on gold surfaces. Science 351, 957 (2016)

    Article  ADS  Google Scholar 

  87. Restuccia, P., Ferrario, M., Righi, M.C.: Monitoring water and oxygen splitting at graphene edges and folds: Insights into the lubricity of graphitic materials. Carbon 156, 93–103 (2020)

    Article  Google Scholar 

  88. Losi, G., Restuccia, P., Righi, M.C.: Superlubricity in phosphorene identified by means of ab initio calculations. 2D Mater. 7, 025033 (2020)

  89. Zhao, X., Phillpot, S.R., Sawyer, W.G., Sinnott, S.B., Perry, S.S.: Transition from Thermal to Athermal Friction under Cryogenic Conditions. Phys. Rev. Lett. 102, 186102 (2009)

    Article  ADS  Google Scholar 

  90. Barel, I., Urbakh, M., Jansen, L., Schirmeisen, A.: Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 104, 066104 (2010)

    Article  ADS  Google Scholar 

  91. Giordano, S.: Spin variable approach for the statistical mechanics of folding and unfolding chains. Soft Matter 13, 6877–6893 (2017)

    Article  ADS  Google Scholar 

  92. Caruel, M., Truskinovsky, L.: Statistical mechanics of the Huxley-Simmons model. Phys. Rev. E 93, 062407 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  93. Caruel, M., Truskinovsky, L.: Physics of muscle contraction. Rep. Prog. Phys. 81, 036602 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  94. Benedito, M., Giordano, S.: Thermodynamics of small systems with conformational transitions: the case of two-state freely jointed chains with extensible units. J. Chem. Phys. 149, 054901 (2018)

    Article  ADS  Google Scholar 

  95. Benedito, M., Giordano, S.: Isotensional and isometric force-extension response of chains with bistable units and Ising interactions. Phys. Rev. E 98, 052146 (2018)

    Article  ADS  Google Scholar 

  96. Florio, G., Puglisi, G.: Unveiling the influence of device stiffness in single macromolecule unfolding. Sci. Rep. 9, 4997 (2019)

    Article  ADS  Google Scholar 

  97. Bellino, L., Florio, G., Puglisi, G.: The influence of device handles in single-molecule experiments. Soft Matter 15, 8680–8690 (2019)

    Article  ADS  Google Scholar 

  98. Florio, G., Puglisi, G., Giordano, S.: Role of temperature in the decohesion of an elastic chain tethered to a substrate by onsite breakable links. Phys. Rev. Res. 2, 033227 (2020)

    Article  Google Scholar 

  99. Cannizzo, A., Florio, G., Puglisi, G., Giordano, S.: Temperature controlled decohesion regimes of an elastic chain adhering to a fixed substrate by softening and breakable bonds. J. Phys. A: Math. Theor. 54, 445001 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  100. Bellino, L., Florio, G., Giordano, S., Puglisi, G.: On the competition between interface energy and temperature in phase transition phenomena. Appl. Eng. Sci. 2, 100009 (2020)

    Google Scholar 

  101. Cannizzo, A., Bellino, L., Florio, G., Puglisi, G., Giordano, S.: Thermal control of nucleation and propagation transition stresses in discrete lattices with non-local interactions and non-convex energy. Eur. Phys. J. Plus 137, 569 (2022)

    Article  Google Scholar 

  102. Prados, A., Carpio, A., Bonilla, L.L.: Sawtooth patterns in force-extension curves of biomolecules: an equilibrium-statistical-mechanics theory. Phys. Rev. E 88, 012704 (2013)

    Article  ADS  Google Scholar 

  103. Bonilla, L.L., Carpio, A., Prados, A.: Theory of force-extension curves for modular proteins and DNA hairpins. Phys. Rev. E 91, 052712 (2015)

    Article  ADS  Google Scholar 

  104. De Tommasi, D., Millardi, N., Puglisi, G., Saccomandi, G.: An energetic model for macromolecules unfolding in stretching experiments. J. R. Soc. Interface 10, 20130651 (2013)

    Article  Google Scholar 

  105. Benichou, I., Givli, S.: Structures undergoing discrete phase transformation. J. Mech. Phys. Sol. 61, 94 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  106. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica (The Hague) 7, 284 (1940)

  107. Manca, F., Giordano, S., Palla, P.L., Zucca, R., Cleri, F., Colombo, L.: Elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles. J. Chem. Phys. 136, 154906 (2012)

    Article  ADS  Google Scholar 

  108. Weiner, J.H.: Statistical Mechanics of Elasticity. Dover Publications, New York (1983)

    MATH  Google Scholar 

  109. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge UK (2021)

    Book  MATH  Google Scholar 

  110. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, San Diego (1965)

    MATH  Google Scholar 

  111. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publication, New York (1970)

    MATH  Google Scholar 

  112. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. National Institute of Standards and Technology and Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  113. Bellman, R.: A brief introduction to theta functions. Rinehart and Co., New York, Holt (1961)

    MATH  Google Scholar 

  114. Bellman, R., Lehman, R.S.: The Reciprocity Formula for Multidimensional Theta Functions. Proc. Am. Math. Soc. 12, 954–961 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  115. Deconinck, B., Heil, M., Bobenko, A., Van Hoeij, M., Schmies, M.: Computing Riemann Theta Functions. Math. Comput. 73, 1417–1442 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. Petukhov, B.V., Bartsch, M., Messerschmidt, U.: Temperature dependence of the flow stress and the strain rate sensitivity at the transition from the Peierls mechanism to pinning by localized obstacles. Eur. Phys. J. Appl. Phys. 9, 89–95 (2000)

    Article  ADS  Google Scholar 

  117. Cordier, P., Amodeo, J., Carrez, P.: Modelling the rheology of MgO under Earth’s mantle pressure, temperature and strain rates. Nature 481, 177 (2012)

    Article  ADS  Google Scholar 

  118. Kamimura, Y., Edagawa, K., Takeuchi, S.: Experimental evaluation of the Peierls stresses in a variety of crystals and their relation to the crystal structure. Acta Materialia 61, 294–309 (2013)

    Article  ADS  Google Scholar 

  119. Amodeo, J., Merkel, S., Tromas, C., Carrez, P., Korte-Kerzel, S., Cordier, P., Chevalier, J.: Dislocations and plastic deformation in MgO crystals: a review. Crystals 8, 240 (2018)

    Article  Google Scholar 

  120. Curry, J.F., Hinkle, A.R., Babuska, T.F., Wilson, M.A., Dugger, M.T., Krick, B.A., Argibay, N., Chandross, M.: Atomistic origins of temperature-dependent shear strength in 2D materials. ACS Appl. Nano Mater. 1, 5401–5407 (2018)

    Article  Google Scholar 

  121. Fajardo, O.Y., Mazo, J.J.: Effects of surface disorder and temperature on atomic friction. Phys. Rev. B 82, 035435 (2010)

    Article  ADS  Google Scholar 

  122. Peng, Y., Serfass, C.M., Kawazoe, A., Shao, Y., Gutierrez, K., Hill, C.N., Santos, V.J., Visell, Y., Hsiao, L.C.: Elastohydrodynamic friction of robotic and human fingers on soft micropatterned substrates. Nat. Mater. 20, 1707–1711 (2021)

    Article  ADS  Google Scholar 

  123. Mergel, J.C., Scheibert, J., Sauer, R.A.: Contact with coupled adhesion and friction: Computational framework, applications, and new insights. J. Mech. Phys. Sol. 146, 104194 (2021)

    Article  MathSciNet  Google Scholar 

  124. Risken, H.: The Fokker–Planck equation. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  125. Coffey, W.T., Kalmykov, Yu.P., Waldron, J.P.: The Langevin equation. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  126. Benichou, I., Givli, S.: Rate Dependent Response of Nanoscale Structures Having a Multiwell Energy Landscape. Phys. Rev. Lett. 114, 095504 (2015)

    Article  ADS  Google Scholar 

  127. Benichou, I., Zhang, Y., Dudko, O.K., Givli, S.: The rate dependent response of a bistable chain at finite temperature. J. Mech. Phys. Sol. 95, 44 (2016)

    Article  ADS  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Giordano.

Ethics declarations

Financial interest

The author certifies that he has no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Published article

All data generated or analyzed during this study are included in this published article.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: reciprocal relation for Jacobi and Riemann theta functions

Appendix A: reciprocal relation for Jacobi and Riemann theta functions

In Appendix, we briefly discuss the conceptual relationship between direct and reciprocal Bravais lattices, Dirac comb, Poisson summation formula, and reciprocal relation for the Riemann theta function and third Jacobi theta function. We consider a Bravais lattice composed of points \(\vec {r}=n_1\vec {a}_1+...+n_N\vec {a}_N\in \mathbb {R}^N\) where \(n_j\in \mathbb {Z}\) and \(\vec {a}_j\in \mathbb {R}^N\) are the primitive vectors. We introduce a periodic sampling function \(f(\vec {x})\) on this Bravais lattice constructed by delta functions (Dirac comb)

$$\begin{aligned} f(\vec {x})=\sum _{\vec {n}\in \mathbb {Z}^N}\delta \left( \vec {x}-n_1\vec {a}_1...-n_N\vec {a}_N\right) . \end{aligned}$$
(A1)

To simplify the notation, we define a matrix \(\mathcal {C}\in \mathcal {M}_{N,N}(\mathbb {R})\) where the columns represent the vectors \(\vec {a}_j\). It means that \(\mathcal {C}=[\vec {a}_1\vert ...\vert \vec {a}_N]\) and we can write

$$\begin{aligned} f(\vec {x})=\sum _{\vec {n}\in \mathbb {Z}^N}\delta \left( \vec {x}-\mathcal {C}\vec {n}\right) , \end{aligned}$$
(A2)

with \(\vec {n}=(n_1,...,n_N)^T\). We assume that \(\mathcal {C}\) is not singular. Then, if we define \(\vec {\eta }\) such that \(\vec {x}=\mathcal {C}\vec {\eta }\), we have

$$\begin{aligned} f(\vec {\eta })=\sum _{\vec {n}\in \mathbb {Z}^N}\delta \left( \mathcal {C}(\vec {\eta }-\vec {n})\right) . \end{aligned}$$
(A3)

Now, the function \(f(\vec {\eta })\) is multi-periodic with period one along all directions \(\eta _1,...,\eta _N\). Hence, it can be developed in Fourier series

$$\begin{aligned} f(\vec {\eta })=\sum _{\vec {m}\in \mathbb {Z}^N}c_{\vec {m}}e^{2\pi i \vec {m}\cdot \vec {\eta }}, \end{aligned}$$
(A4)

where the coefficients are given by

$$\begin{aligned} c_{\vec {m}}=\int _{[0,1]^N}f(\vec {\eta })e^{-2\pi i \vec {m}\cdot \vec {\eta }}\mathrm {d}\vec {\eta }. \end{aligned}$$
(A5)

In the set \([0,1]^N\), we have \(f(\vec {\eta })=\delta \left( \mathcal {C}\vec {\eta }\right) \), and therefore, we get

$$\begin{aligned} c_{\vec {m}}=\int _{[0,1]^N}\delta \left( \mathcal {C}\vec {\eta }\right) e^{-2\pi i \vec {m}\cdot \vec {\eta }}\mathrm {d}\vec {\eta }=\frac{1}{\det \mathcal {C}}, \end{aligned}$$
(A6)

as we can easily prove by applying the substitution \(\vec {y}=\mathcal {C}\vec {\eta }\). Coming back to the variable \(\vec {x}\), we finally obtain

$$\begin{aligned} f(\vec {x})=\frac{1}{\det \mathcal {C}}\sum _{\vec {m}\in \mathbb {Z}^N}e^{2\pi i \vec {m}\cdot \mathcal {C}^{-1} \vec {x}}, \end{aligned}$$
(A7)

which is the Fourier series of the Dirac comb defined in Eq. (A1) or (A2). We can also determine the Fourier transform of the same function

$$\begin{aligned} F(\vec {k})=\int _{\mathbb {R}^N}f(\vec {x})e^{- i \vec {k}\cdot \vec {x}}\mathrm {d}\vec {x}=\frac{1}{\det \mathcal {C}}\sum _{\vec {m}\in \mathbb {Z}^N}\int _{\mathbb {R}^N}e^{2\pi i \vec {m}\cdot \mathcal {C}^{-1} \vec {x}}e^{- i \vec {k}\cdot \vec {x}}\mathrm {d}\vec {x}. \end{aligned}$$
(A8)

Since \(\delta (\vec {q})=\int _{\mathbb {R}^N}e^{i\vec {q}\cdot \vec {x}}\mathrm {d}\vec {x}/(2\pi )^N\), we easily get

$$\begin{aligned} F(\vec {k})=\frac{(2\pi )^N}{\det \mathcal {C}}\sum _{\vec {m}\in \mathbb {Z}^N}\delta \left( \vec {k}-2\pi \mathcal {C}^{-T}\vec {m} \right) . \end{aligned}$$
(A9)

It means that if \(\vec {r}=\mathcal {C}\vec {n}\) \( \forall \vec {n}\in \mathbb {Z}^N\) is the direct Bravais lattice, then \(\vec {k}=2\pi \mathcal {C}^{-T}\vec {m} \) \(\forall \vec {m}\in \mathbb {Z}^N\) is the reciprocal Bravais lattice. In other words, the Dirac comb on the direct lattice is Fourier transformed into a Dirac comb on the reciprocal lattice. This property can be applied to find the so-called N-dimensional Poisson summation formula. We consider an arbitrary function \(\phi (\vec {x})\) for which the Fourier transform \(\Phi (\vec {k})\) exists. We define the replication or periodic summation

$$\begin{aligned} g(\vec {x})=\sum _{\vec {n}\in \mathbb {Z}^N}\phi (\vec {x}-\mathcal {C}\vec {n})=\phi *f, \end{aligned}$$
(A10)

where f is defined in Eq. (A2) and \(*\) means convolution. Since the Fourier transform of the convolution is the product of the two Fourier transforms (convolution theorem), we have

$$\begin{aligned} G(\vec {k})= & {} \frac{(2\pi )^N}{\det \mathcal {C}}\sum _{\vec {m}\in \mathbb {Z}^N}\Phi (\vec {k})\delta \left( \vec {k}-2\pi \mathcal {C}^{-T}\vec {m} \right) \nonumber \\= & {} \frac{(2\pi )^N}{\det \mathcal {C}}\sum _{\vec {m}\in \mathbb {Z}^N}\Phi (2\pi \mathcal {C}^{-T}\vec {m})\delta \left( \vec {k}-2\pi \mathcal {C}^{-T}\vec {m} \right) . \end{aligned}$$
(A11)

Now, we can remember that the Fourier transform of \(e^{i\vec {x}\cdot \vec {v}}\) is given by \((2\pi )^N\delta (\vec {k}-\vec {v})\), and then from Eq. (A11) we come back to the original function \(g(\vec {x})\), eventually obtaining

$$\begin{aligned} \sum _{\vec {n}\in \mathbb {Z}^N}\phi (\vec {x}-\mathcal {C}\vec {n})=\frac{1}{\det \mathcal {C}}\sum _{\vec {m}\in \mathbb {Z}^N}\Phi (2\pi \mathcal {C}^{-T}\vec {m})e^{2\pi i \vec {x}\cdot \mathcal {C}^{-T} \vec {m}}, \end{aligned}$$
(A12)

which is the Fourier series of the periodic summation. For \(\vec {x}=0\), this result delivers the Poisson summation formula

$$\begin{aligned} \sum _{\vec {n}\in \mathbb {Z}^N}\phi (\mathcal {C}\vec {n})=\frac{1}{\det \mathcal {C}}\sum _{\vec {m}\in \mathbb {Z}^N}\Phi (2\pi \mathcal {C}^{-T}\vec {m}). \end{aligned}$$
(A13)

We take now into account the following particular function \(\phi (\vec {x})\) with its Fourier transform \(\Phi (\vec {k})\)

$$\begin{aligned} \phi (\vec {x})= & {} e^{2\pi i \left( \frac{1}{2}\vec {x}\cdot \mathcal {T}\vec {x}+\vec {x}\cdot \vec {\sigma } \right) },\end{aligned}$$
(A14)
$$\begin{aligned} \Phi (\vec {k})= & {} \frac{1}{\sqrt{\det (-i\mathcal {T})}}e^{-\pi i \left( \vec {\sigma }-\frac{\vec {k}}{2\pi }\right) \cdot \mathcal {T}^{-1}\left( \vec {\sigma }-\frac{\vec {k}}{2\pi }\right) }, \end{aligned}$$
(A15)

where \(\mathcal {T}\in \mathcal {M}_{N,N}(\mathbb {C})\) with \(\mathcal {T}=\mathcal {T}^T\), \(\Im \text{ m }(\mathcal {T})>0\) and \(\vec {\sigma }\in \mathbb {C}^N\). To conclude, we substitute Eqs. (A14) and (A15) in the Poisson summation formula given in Eq. (A13) and we get, after straightforward calculations, the N-dimensional Jacobi reciprocal relation for the Riemann theta function

$$\begin{aligned} \Theta (\vec {z}\vert \Omega )=\sqrt{\frac{1}{\det \left( -i\Omega \right) }}e^{-\pi i \vec {z}\cdot \Omega ^{-1}\vec {z}}\Theta (\Omega ^{-1}\vec {z}\vert -\Omega ^{-1}),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \end{aligned}$$
(A16)

where we have identified \(\Omega =\mathcal {C}^T\mathcal {T}\mathcal {C}\) and \(\vec {z}=\mathcal {C}^T\vec {\sigma }\). This proves Eq. (47) of the main text. Other more refined properties of \(\Theta (\vec {z}\vert \Omega )\) can be found in the literature [112, 113]. The result given in Eq. (A16) can be specialized to the case with \(N=1\) by obtaining the original Jacobi identity

$$\begin{aligned} \vartheta _3\left( z,\tau \right) =\frac{1}{\sqrt{-i\tau }}e^{\frac{z^2}{\pi i \tau }}\vartheta _3\left( \frac{z}{\tau },-\frac{1}{\tau }\right) , \end{aligned}$$
(A17)

where we have conveniently compared the definitions of \(\vartheta _3\left( z,\tau \right) \) and \(\Theta (\vec {z}\vert \Omega )\) with \(N=1\) [112, 113]. This finally proves Eq. (17) of the main text as well.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giordano, S. Statistical mechanics of rate-independent stick-slip on a corrugated surface composed of parabolic wells. Continuum Mech. Thermodyn. 34, 1343–1372 (2022). https://doi.org/10.1007/s00161-022-01129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01129-0

Keywords

Navigation