Skip to main content
Log in

Positive definiteness in coupled strain gradient elasticity

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The linear theory of coupled gradient elasticity has been considered for hemitropic second gradient materials, specifically the positive definiteness of the strain and strain gradient energy density, which is assumed to be a quadratic form of the strain and of the second gradient of the displacement. The existence of the mixed, fifth-rank coupling term significantly complicates the problem. To obtain inequalities for the positive definiteness including the coupling term, a diagonalization in terms of block matrices is given, such that the potential energy density is obtained in an uncoupled quadratic form of a modified strain and the second gradient of displacement. Using orthonormal bases for the second-rank strain tensor and third-rank strain gradient tensor results in matrix representations for the modified fourth-rank and the sixth-rank tensors, such that Sylvester’s formula and eigenvalue criteria can be applied to yield conditions for positive definiteness. Both criteria result in the same constraints on the constitutive parameters. A comparison with results available in the literature was possible only for the special case that the coupling term vanishes. These coincide with our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abali, B.E., Barchiesi, E.: Additive manufacturing introduced substructure and computational determination of metamaterials parameters by means of the asymptotic homogenization (2020)

  2. Abali, B.E., Yang, H., Papadopoulos, P.: A computational approach for determination of parameters in generalized mechanics. In: Altenbach, H., Müller, W.H., Abali, B.E. (eds.) Higher Gradient Materials and Related Generalized Continua, Advanced Structured Materials, vol 120. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30406-5_1

  3. Altan, B.S., Aifantis, E.C.: On some aspects in the special theory of gradient elasticity. J. Mech. Behav. Mater. 8(3), 231–282 (1997)

    Article  Google Scholar 

  4. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)

    Article  Google Scholar 

  5. Askes, H., Suiker, A.S.J., Sluys, L.J.: A classification of higher-order strain-gradient models linear analysis. Arch. Appl. Mech. 72, 171–188 (2002)

    Article  ADS  Google Scholar 

  6. Auffray, N., He, Q., Le Quang, H.: Complete symmetry classification and compact matrix representations for 3D strain gradient elasticity. Int. J. Solids Struct. 159, 197–210 (2019)

    Article  Google Scholar 

  7. Auffray, N., Le Quang, H., He, Q.C.: Matrix representations for 3D strain-gradient elasticity. J. Mech. Phys. Solids 61(5), 1202–1223 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. Brannon, R.: Rotation, Reflection, and Frame Changes. IOP Publishing, Bristol (2018)

    Google Scholar 

  9. Cosserat, F., Cosserat, E.: Théorie des corps déformables. A. Herman et Fils, Paris (1909)

    MATH  Google Scholar 

  10. Cowin, S., Mehrabadi, M.: The structure of the linear anisotropic elastic symmetries. J. Mech. Phys. Solids 40(7), 1459–1471 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  11. dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized hooke’s law for isotropic second gradient materials. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Eremeyev, V.A., Altenbach, H.: On the direct approach in the theory of second gradient plates. In: Altenbach, H., Mikhasev, G.I. (eds.) Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures, Advanced Structured Materials, vol. 45, pp. 147–154. Springer, Cham (2015)

    Chapter  Google Scholar 

  13. Eremeyev, V.A., Lurie, S.A., Solyaev, Y.O., dellIsola, F.: On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity. Zeitschrift für angewandte Mathematik und Physik 71(6), 182 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ferretti, M., Madeo, A., dell’Isola, F., Boisse, P.: Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Zeitschrift für angewandte Mathematik und Physik 65(3), 587–612 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  15. Forest, S., Bertram, A.: Formulations of strain gradient plasticity. In: Altenbach, H., Maugin, G.A., Eremeyev, V.A. (eds.) Mechanics of Generalized Continua, Advanced Structured Materials, vol. 7, pp. 137–149. Springer, Berlin (2011)

    Chapter  Google Scholar 

  16. Georgiadis, H.G., Anagnostou, D.S.: Problems of the FlamantBoussinesq and Kelvin type in dipolar gradient elasticity. J. Elast. 90, 71–98 (2008)

    Article  Google Scholar 

  17. Germain, P.: The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25(3), 556–575 (1973)

    Article  Google Scholar 

  18. Glüge, R., Kalisch, J., Bertram, A.: The eigenmodes in isotropic strain gradient elasticity. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Materials, vol. 42, pp. 163–178. Springer, Cham (2016)

    Google Scholar 

  19. Gusev, A.A., Lurie, S.A.: Symmetry conditions in strain gradient elasticity. Math. Mech. Solids 22(4), 683–691 (2017)

    Article  MathSciNet  Google Scholar 

  20. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  21. Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61, 2381–2401 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. Kirchhoff, G.: Über das Gleichgewicht und die Bewegung eines unendlich dnnen elastischen Stabes. Journal fr die reine und angewandte Mathematik 56, 285–313 (1859)

    Google Scholar 

  23. Knops, R., Payne, L.: Uniqueness Theorems in Linear Elasticity. Springer Tracts in Natural Philosophy. Springer, Berlin (1971)

    Book  Google Scholar 

  24. Lazar, M., Maugin, G.A., Aifantis, E.C.: On a theory of nonlocal elasticity of bi-helmholtz type and some applications. Int. J. Solids Struct. 43(6), 1404–1421 (2006)

    Article  MathSciNet  Google Scholar 

  25. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Lurie, S., Volkov-Bogorodsky, D., Leontiev, A., Aifantis, E.: Eshelby’s inclusion problem in the gradient theory of elasticity: applications to composite materials. Int. J. Eng. Sci. 49(12), 1517–1525 (2011). Please check and confirm the edit made in the reference [26]

    Article  MathSciNet  Google Scholar 

  27. Ma, H.M., Gao, X.L.: A new homogenization method based on a simplified strain gradient elasticity theory. Acta Mech. 225, 1075–1091 (2014)

    Article  MathSciNet  Google Scholar 

  28. Mandel, J.: Generalisation de la theorie de plasticite de w. t. koiter. Int. J. Solids Struct. 1(3), 273–295 (1965)

    Article  Google Scholar 

  29. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  Google Scholar 

  30. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  Google Scholar 

  31. Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford Science Publications. Clarendon Press, Oxford (1985)

    Google Scholar 

  32. Peerlings, R.H.J., Geers, M.G.D., de Borst, R., Brekelmans, W.A.M.: A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38(44–45), 7723–7746 (2001)

    Article  Google Scholar 

  33. Polizzotto, C.: A note on the higher order strain and stress tensors within deformation gradient elasticity theories: physical interpretations and comparisons. Int. J. Solids Struct. 90, 116–121 (2016)

    Article  Google Scholar 

  34. Reiher, J.C., Giorgio, I., Bertram, A.: Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J. Eng. Mech. 143(2), 04016112 (2017)

    Article  Google Scholar 

  35. Sinclair, G.B.: Stress singularities in classical elasticity I: removal, interpretation, and analysis. Appl. Mech. Rev. 57, 251–298 (2004)

    Article  ADS  Google Scholar 

  36. Thomson, W.: XXI. Elements of a mathematical theory of elasticity. Philos. Trans. R. Soc. Lond. 146, 481–498 (1856)

    ADS  Google Scholar 

  37. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    Article  MathSciNet  Google Scholar 

  38. Voigt, W.: Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). B. G. Teubner, Leipzig (1910)

    MATH  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial support by the German Research Foundation (DFG) via Project AL 341/51-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidiia Nazarenko.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarenko, L., Glüge, R. & Altenbach, H. Positive definiteness in coupled strain gradient elasticity. Continuum Mech. Thermodyn. 33, 713–725 (2021). https://doi.org/10.1007/s00161-020-00949-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00949-2

Keywords

Navigation