Skip to main content
Log in

Two-scale thermomechanical damage model for dynamic shear failure in brittle solids

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A coupled thermomechanical damage approach for dynamic shear failure in brittle solids is proposed in the present contribution. The model is constructed by asymptotic homogenization from microstructures with dynamically evolving microcracks, in mode II, with unilateral contact and friction conditions on their lips. Crack-tip and frictional heating effects assumed at the small scale give rise to distributed heat sources in the macroscopic temperature equation and specific dissipation terms in the upscaled damage law. The analysis of the effective thermomechanical response of the model reveals strain rate and size effects and the influence of friction and growth of microcracks on the macroscopic thermal evolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. ABAQUS 6.13, Analysis User’s Manual. Dassault Systems Simulia Corporation, RI, USA (2013)

  2. Andrieux, S., Bamberger, Y., Marigo, J.-J.: Un modele de materiau microfissure pour les betons et les roches. J. Méc. Theor. Appl. 5, 471–513 (1986)

    MATH  Google Scholar 

  3. Archer, J.S., Lesser, A.J.: Shear band formation and mode II fracture of polymeric glasses. J. Polym. Sci. B: Polym. Phys. 49, 103–114 (2010)

    Article  ADS  Google Scholar 

  4. Ashby, M.F., Hallam, S.D.: The failure of brittle solids containing small cracks under compressive stress states. Acta Metall. 34, 497–510 (1986)

    Article  Google Scholar 

  5. Atiezo, M.K., Gbetchi, K., Dascalu, C.: Dynamic shear damage with frictional sliding on microcracks. Eng. Fract. Mech. 236 (2020)

  6. Auriault, J.-L.: Wave propagation and transient heat transfer in thermoelastic composites. Int. J. Heat Mass Transf. 55, 5972–5978 (2012)

    Article  Google Scholar 

  7. Bui, H.D., Ehrlacher, A., Nguyen, Q.S.: Propagation de fissure en thermoélasticité dynamique. J. de Mécanique 19, 697–723 (1980)

    MathSciNet  MATH  Google Scholar 

  8. Bhatt, H., Rosakis, A., Sammis, G.: A micro-mechanics based constitutive model for brittle failure at high strain rates. J. Appl. Mech. 79(3), 1016–28 (2011)

    Google Scholar 

  9. Bjerke, T.W.: Thermomechanical Behavior of Amorphous Polymers During High-Speed Crack Propagation, Ph.D. Dissertation, University of Delaware, Newark, DE (2002)

  10. Bjerke, T.W., Lambros, J.: Theoretical development and experimental validation of a thermally dissipative cohesive zone model for dynamic fracture of amorphous polymers. J. Mech. Phys. Solids 51, 1947–1970 (2003)

    Article  Google Scholar 

  11. Bougaut, O., Rittel, D.: On crack-tip cooling during dynamic crack initiation. Int. J. Solids Struct. 38, 2517–2532 (2001)

    Article  MATH  Google Scholar 

  12. Bjerke, T.W., Lambros, J.: Heating during shearing and opening dominated dynamic fracture of polymers. Exp. Mech. 42(1), 107–114 (2002)

    Article  Google Scholar 

  13. Camacho, G.T., Ortiz, M.: Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33, 2899–2938 (1996)

    Article  MATH  Google Scholar 

  14. Dascalu, C.: Multiscale modeling of rapid failure in brittle solids: branching instabilities. Mech. Mater. 116, 77–89 (2018)

    Article  Google Scholar 

  15. Dascalu, C., Bilbie, G., Agiasofitou, E.: Damage and size effect in elastic solids: a homogenization approach. Int. J. Solids Struct. 45, 409–430 (2008)

    Article  MATH  Google Scholar 

  16. Dascalu, C., Gbetchi, K.: Dynamic evolution of damage by microcracking with heat dissipation. Int. J. Solids Struct. 174–175, 128–144 (2019)

    Article  Google Scholar 

  17. Dienes, J.K., Zuo, Q.H., Kershner, J.D.: Impact initiation of explosives and propellants via statistical crack mechanics. J. Mech. Phys. Solids 54(6), 1237–1275 (2006)

    Article  ADS  MATH  Google Scholar 

  18. Duarte, C.A., Grilli, N., Koslowski, M.: Effect of initial damage variability on hot-spot nucleation in energetic materials. J. Appl. Phys. 124(2), 025104 (2018)

    Article  ADS  Google Scholar 

  19. Ene, H.I.: On linear thermoelasticity of composite materials. Int. J. Eng. Sci. 21, 443–448 (1983)

    Article  MATH  Google Scholar 

  20. Fialko, Y.: Temperature fields generated by the elastodynamic propagation of shear cracks in the Earth. J. Geophys. Res. 109, B01303 (2004)

    ADS  Google Scholar 

  21. Fish, J.: Practical Multiscaling. Wiley, London (2013)

    Google Scholar 

  22. Francfort, G.A.: Homogenization and linear thermoelasticity. SIAM J. Math. Anal. 14, 696–708 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Freund, L.B.: Dynamic Fracture Mechanics. Cambridge University Press, Oxford (1990)

    Book  MATH  Google Scholar 

  24. Gambarotta, L., Lagomarsino, S.: A microcrack damage model for brittle materials. Int. J. Solids Struct 30(2), 177–198 (1993)

    Article  MATH  Google Scholar 

  25. Grilli, N., Duarte, C.A., Koslowski, M.: Dynamic fracture and hot-spot modeling in energetic composites. J. Appl. Phys. 123(6), 065101 (2018)

    Article  ADS  Google Scholar 

  26. Halm, D., Dragon, A.: An anisotropic model of damage and frictional sliding for brittle materials. Eur. J. Mech. A Solids 17, 439–460 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Horii, H., Nemat-Nasser, S.: Brittle failure in compression: splitting, faulting and brittle-ductile transition. Philos. Trans. R. Soc. Lond. 319, 337–374 (1986)

    Article  ADS  MATH  Google Scholar 

  28. Huang, C., Subhash, G., Vitton, S.J.: A dynamic damage growth model for uniaxial compressive response of rock aggregates. Mech. Mater. 34, 267–277 (2002)

    Article  Google Scholar 

  29. Kachanov, L.M.: A microcrack model of rock inelasticity–part I: frictional sliding on microcracks; part II: propagation of microcracks. Mech. Mater. 1, 19–41 (1982)

    Article  Google Scholar 

  30. Keita, O., Dascalu, C., François, B.: A two-scale model for dynamic damage evolution. J. Mech. Phys. Solids. 64, 170–183 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  31. Lachenbruch, A.H.: Frictional heating, fluid pressure, and the resistance to fault motion. J. Geophys. Res. 85, 6097–6122 (1980)

    Article  ADS  Google Scholar 

  32. Lawn, B.R., Marshall, D.B.: Nonlinear stress-strain curves for solids containing closed cracks with friction. J. Mech. Phys. 46(1), 85–113 (1998)

    Article  ADS  MATH  Google Scholar 

  33. Lee, X., Ju, J.W.: Micromechanical damage model for brittle solids–II: compressive loadings. J. Eng. Mech. ASCE 117, 1515–1536 (1991)

    Article  Google Scholar 

  34. Leguillon, D., Sanchez-Palencia, E.: On the behaviour of a cracked elastic body with (or without) friction. J. Mech. Theor. Appl. 1, 195–209 (1982)

    MATH  Google Scholar 

  35. Nemat-Nasser, S., Obata, M.: A microcrack model of dilatancy in brittle material. J. Appl. Mech. 55, 24–35 (1988)

    Article  ADS  Google Scholar 

  36. Nemat-Nasser, S., Deng, H.: Strain-rate effect on brittle failure in compression. Acta Metall. Mater. 42, 1013–1024 (1994)

    Article  Google Scholar 

  37. Paliwal, B., Ramesh, K.T.: An interacting micro-crack damage model for failure of brittle materials under compression. J. Mech. Phys. Solids 56(3), 896–923 (2008)

    Article  ADS  MATH  Google Scholar 

  38. Parnell, W.J.: Coupled thermoelasticity in a composite half-space. J. Eng. Math. 56, 1–21 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ravi-Chandar, K., Lu, J., Yang, B., Zhu, Z.: Failure mode transitions in polymers under high strain rate loading. Int. J. Fract. 101, 33–72 (2000)

    Article  Google Scholar 

  40. Ravichandran, G., Subhash, G.: A micromechanical model for high strain rate behavior of ceramics. Int. J. Solids Struct. 32, 2627–2646 (1995)

    Article  MATH  Google Scholar 

  41. Rice, J.R.: Heating, weakening and shear localization in earthquake rupture. Philos. Trans. R. Soc. A 375, 20160015 (2017)

    Article  ADS  Google Scholar 

  42. Rittel, D.: Experimental investigation of transient thermoelastic effects in dynamic fracture. Int. J. Solids Struct. 35, 2959–2973 (1998)

    Article  Google Scholar 

  43. Rittel, D.: Thermomechanical aspects of dynamic crack initiation. Int. J. Fract. 99, 199–209 (1999)

    Article  Google Scholar 

  44. Rosakis, A.J., Samudrala, O., Coker, D.: Cracks faster than the shear wave speed. Science 284, 1337–1340 (1999)

    Article  ADS  Google Scholar 

  45. Rosakis, A.J., Samudrala, O., Coker, D.: Intersonic shear crack growth along weak planes. Mat. Res. Innovat. 3, 236–243 (2000)

    Article  Google Scholar 

  46. Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 127. Springer, Berlin (1980)

    MATH  Google Scholar 

  47. Schlüter, A., Kuhn, C., Müller, R., Gross, D.: An investigation of intersonic fracture using a phase field model. Arch. Appl. Mech. 86, 321–333 (2016)

    Article  ADS  Google Scholar 

  48. Slepyan, L.I.: Models and Phenomena in Fracture Mechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  49. Sun, N.S., Hsu, T.R.: Thermomechanical coupling effects on fractured solids. Int. J. Fract. 78, 67–87 (1996)

    Article  Google Scholar 

  50. Shao, Y., Zhang, Y., Xu, X., Zhou, Z., Li, W., Liu, B.: Effect of crack pattern on the residual strength of ceramics after quenching. J. Am. Ceram. Soc. 94, 2804–2807 (2011)

    Article  Google Scholar 

  51. Telega, J.J.: Homogenization of fissured elastic solids in the presence of unilateral conditions and friction. Comput. Mech. 6, 109–127 (1990)

    Article  MATH  Google Scholar 

  52. Truesdell, C.A., Toupin, R.A.: The Classical Field Theories, Handbuch der Physik. Springer, Berlin, Vols. III-1 (1960)

  53. Wrzesniak, A., Dascalu, C., Besuelle, P.: A two-scale time-dependent model of damage: influence of micro-cracks friction. Eur. J. Mech. A/Solids 49, 345–361 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhu, Q.Z., Shao, J.F.: A refined micromechanical damage-friction model with strength prediction for rock-like materials under compression. Int. J. Solids Struct. 60, 75–83 (2015)

    Article  Google Scholar 

  55. Zhu, Q.Z., Zhao, L.Y., Shao, J.F.: Analytical and numerical analysis of frictional damage in quasi brittle materials. J. Mech. Phys. Solids 92, 137–163 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  56. Yevtushenko, A.A., Kuciej, M.: Influence of the protective strip properties on distribution of the temperature at transient frictional heating. Int. J. Heat Mass Transf. 52, 376–384 (2009)

    Article  MATH  Google Scholar 

  57. Yevtushenko, A.A., Kuciej, M., Yevtushenko, O.: Three-element model of frictional heating during braking with contact thermal resistance and time-dependent pressure. Int. J. Therm. Sci. 50, 1116–1124 (2011)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Horizon 2020 Programme (Excellent Science, Marie-Sklodowska-Curie Actions) under REA Grant Agreement 675602 (Project OUTCOME).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Dascalu.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Asymptotic expansions

The terms of orders \(\varepsilon ^0\), \(\varepsilon ^1\), \(\varepsilon ^2\) in the asymptotic expansions of the thermomechanical fields are given below. In the expansion of \({{\varvec{q}}}^{\varepsilon }\) given in Eq. (16), the terms \({{\varvec{q}}}^{(p)}\), \(p = 0, 1, 2\) are:

$$\begin{aligned} \displaystyle q^{(-1)}_{j}=-k\frac{\partial {T^{(0)}}}{\partial {y_{j}}} ; \ q^{(0)}_{j}=-k \Big ( \frac{\partial {T^{(0)}}}{\partial {x_{j}}}+\frac{\partial {T^{(1)}}}{\partial {y_{j}}} \Big ) ; \ q^{(1)}_{j}=-k \Big ( \frac{\partial {T^{(1)}}}{\partial {x_{j}}}+\frac{\partial {T^{(2)}}}{\partial {y_{j}}} \Big ) \end{aligned}$$
(62)

and the corresponding terms for \({\varvec{\sigma }}^{\varepsilon }\) in development (17) are:

$$\begin{aligned}&\sigma ^{(-1)}_{ij} = a_{ijkl} e_{ykl}(\mathbf{u}^{(0)}) \end{aligned}$$
(63)
$$\begin{aligned}&\sigma ^{(0)}_{ij}= a_{ijkl} \big ( e_{xkl}(\mathbf{u}^{(0)})+e_{ykl}(\mathbf{u}^{(1)}) \big ) - b_{ij}(T^{(0)} - T_0) \end{aligned}$$
(64)
$$\begin{aligned}&\sigma ^{(0)}_{ij}= a_{ijkl} \big ( e_{xkl}(\mathbf{u}^{(1)})+e_{ykl}(\mathbf{u}^{(2)}) \big ) - b_{ij}T^{(1)} \end{aligned}$$
(65)

For the expressions of different order terms \(D^{(i)}\) in asymptotic expansion (26) of the crack-tip heat flow \(D^{\varepsilon }\) one obtains:

$$\begin{aligned}&\displaystyle D^{(0)} =\lim _{r \rightarrow 0}\int _{\varGamma Y_{r}}-k\frac{\partial T^{(0)}}{\partial y_j}n_j \mathrm{d}s_{y} ; \ D^{(1)} =\lim _{r \rightarrow 0}\int _{\varGamma Y_{r}}-k(\frac{\partial T^{(0)}}{\partial x_j}+\frac{\partial T^{(1)}}{\partial y_j}) n_j \mathrm{d}s_{y} ; \nonumber \\&\displaystyle D^{(2)} =\lim _{r \rightarrow 0}\int _{\varGamma Y_{r}}-k(\frac{\partial T^{(1)}}{\partial x_j}+\frac{\partial T^{(2)}}{\partial y_j}) n_j \mathrm{d}s_{y} \end{aligned}$$
(66)

The terms of different orders in asymptotic expansion (27) of the energy-release rate \({{\mathcal {G}}}^{d \varepsilon }\) are:

$$\begin{aligned} \displaystyle {{\mathcal {G}}}^{(-1)}&=\lim _{r \rightarrow 0}\int _{\varGamma Y_{r}}\left( \frac{1}{2}a_{ijkl} e_{ykl}(\mathbf{u}^{(0)}) e_{yij}(\mathbf{u}^{(0)})n_1 - a_{ijkl} e_{ykl}(\mathbf{u}^{(0)})n_j \frac{\partial u^{(0)}_i}{\partial y_1}\right) \mathrm{d}s_y \end{aligned}$$
(67)
$$\begin{aligned} \displaystyle {{\mathcal {G}}}^{(0)}&= \lim _{r \rightarrow 0}\int _{\varGamma Y_{r}} \Bigg (\Big ( a_{ijkl} e_{ykl}(\mathbf{u}^{(0)})\big (e_{xij}(\mathbf{u}^{(0)})+e_{yij}(\mathbf{u}^{(1)})\big ) + b_{ij}T_0 e_{yij}(\mathbf{u}^{(0)})\Big )n_1 \nonumber \\&\displaystyle \quad - a_{ijkl}\big ( e_{xkl}(\mathbf{u}^{(0)})+e_{ykl}(\mathbf{u}^{(1)})\big )n_j\frac{\partial u^{(0)}_i}{\partial y_1} - a_{ijkl} e_{ykl}(\mathbf{u}^{(0)})n_j\bigg (\frac{\partial u^{(0)}_i}{\partial x_1}+\frac{\partial u^{(1)}_i}{\partial y_1}\bigg ) \Bigg ) \mathrm{d}s_y \end{aligned}$$
(68)
$$\begin{aligned} \displaystyle {{\mathcal {G}}}^{(1)}&= \lim _{r \rightarrow 0}\int _{\varGamma Y_{r}} \Bigg (\bigg (\frac{1}{2}a_{ijkl} \Big (2e_{ykl}(\mathbf{u}^{(0)})\big (e_{xij}(\mathbf{u}^{(0)}) + e_{yij}(\mathbf{u}^{(1)})\big ) \nonumber \\&\quad \displaystyle + \big (e_{xij}(\mathbf{u}^{(0)})+e_{yij}(\mathbf{u}^{(1)})\big )\big (e_{xkl}(\mathbf{u}^{(0)})+e_{ykl}(\mathbf{u}^{(1)})\big )\Big ) \nonumber \\&\quad \displaystyle + b_{ij}T_0 \big (e_{xij}(\mathbf{u}^{(0)})+e_{yij}(\mathbf{u}^{(1)})\big )+cT^{(0)} +\frac{\rho }{8}\frac{\partial u^{(0)}_i}{\partial y_1}\frac{\partial u^{(0)}_i}{\partial y_1}\Big (\frac{\mathrm{d}d}{\mathrm{d}t}\Big )^2 \bigg )n_1 \nonumber \\&\quad \displaystyle - \bigg (a_{ijkl}e_{ykl}(\mathbf{u}^{(0)})n_j\Big (\frac{\partial u^{(1)}_i}{\partial x_1}+\frac{\partial u^{(2)}_i}{\partial y_1}\Big ) \nonumber \\&\quad \displaystyle +\Big (a_{ijkl}( e_{xkl}(\mathbf{u}^{(0)})+e_{ykl}(\mathbf{u}^{(1)})) - b_{ij}(T^{(0)}-T_0)\Big )n_j\Big (\frac{\partial u^{(0)}_i}{\partial x_1}+\frac{\partial u^{(1)}_i}{\partial y_1}\Big ) \nonumber \\&\quad \displaystyle +\Big (a_{ijkl} ( e_{xkl}(\mathbf{u}^{(1)}) + e_{ykl}(\mathbf{u}^{(2)})) - b_{ij}T^{(1)}\Big )n_j\frac{\partial u^{(0)}_i}{\partial y_1} \bigg ) \Bigg ) \ \mathrm{d}s_y \end{aligned}$$
(69)

For the velocity field the local relation \( \frac{\partial u^{\varepsilon }_i}{\partial t} \simeq - \frac{\mathrm{d} (l/2)}{\mathrm{d}t} \frac{\partial u^{\varepsilon }_i}{\partial x_1}= - \frac{\varepsilon {L_\mathrm{c}}}{2}\frac{\mathrm{d}d}{\mathrm{d}t} \frac{\partial u^{\varepsilon }_i}{\partial x_1}\) in the vicinity of the crack tips [7, 23] has been used.

From Eqs. (18), (21), (22), (23) and (28), we deduce at the order \(\varepsilon ^{-2}\) the problems for \(\mathbf{u}^{(0)}\) and \(T^{(0)}\) as:

$$\begin{aligned}&\displaystyle \frac{\partial }{\partial y_j}\Big (a_{ijkl} e_{ykl}(\mathbf{u}^{(0)})\Big ) = 0 \qquad \text {in}\qquad {Y} \end{aligned}$$
(70)
$$\begin{aligned}&\displaystyle \big [a_{ijkl} e_{ykl}(\mathbf{u}^{(0)}) N_j\big ] = 0 ; \quad \big [u^{(0)}_i N_i\big ] = 0 ; \quad N_i a_{ijkl} e_{ykl}(\mathbf{u}^{(0)}) N_j < 0 \end{aligned}$$
(71)
$$\begin{aligned}&\displaystyle \mid T_i a_{ijkl} e_{ykl}(\mathbf{u}^{(0)}) N_j \mid = - {\mu }_\mathrm{f} N_i a_{ijkl} e_{ykl}(\mathbf{u}^{(0)}) N_j \end{aligned}$$
(72)

and

$$\begin{aligned}&\displaystyle -k\Big ( \frac{\partial ^2 T^{(0)}}{\partial y_1^2}+\frac{\partial ^2 T^{(0)}}{\partial y_2^2} \Big ) =0 \qquad \text {in}\qquad {Y} \end{aligned}$$
(73)
$$\begin{aligned}&\displaystyle \big [T^{(0)}\big ] = 0; \quad \Big [-k \frac{\partial T^{(0)}}{\partial y_{j}} N_j \Big ] = {\mu }_\mathrm{f} N_i a_{ijkl} e_{ykl}(\mathbf{u}^{(0)})\Big [\frac{\partial u^{(0)}_m}{\partial t} T_m\Big ] N_j \end{aligned}$$
(74)
$$\begin{aligned}&\displaystyle \lim _{r \rightarrow 0}\int _{\varGamma Y_{r}}-k\frac{\partial T^{(0)}}{\partial y_j}n_j \mathrm{d}s_{y} =\frac{1}{2}\frac{\mathrm{d}d}{\mathrm{d}t} {L_\mathrm{c}} {{\mathcal {G}}}^{(-1)} \ \ \text {at} \ \ {(y_{1},y_{2})= \left( \pm \frac{d L_\mathrm{c}}{2} ,0\right) } \end{aligned}$$
(75)

The solution is obtained by choosing the macroscopic displacements and temperature fields \(\mathbf{u}^{(0)}(\mathbf{x}, t )\) and \(T^{(0)}(\mathbf{x}, t )\), independent of the microscopic variables \(y_i\), which verify systems (7072) and (7375).

Since \(\mathbf{u}^{(0)}\) is not depending on \(\mathbf{y}\), expressions (6768) show that \({{\mathcal {G}}}^{(-1)}\) and \({{\mathcal {G}}}^{(0)}\) are vanishing. As remarked in [16], the kinetic energy does not contribute to \({{\mathcal {G}}}^{(-1)}\) unless higher-order correctors are considered for the thermomechanical fields.

Appendix B: Computation of the effective coefficients

We provide here the details concerning the computation of the homogenized coefficients appearing in the formulation of the macroscopic elastodamage problem.

The cell problem for \({{\varvec{\xi }}}^{pq}\) is obtained in the form:

$$\begin{aligned}&\displaystyle \frac{\partial }{\partial y_j}\big (a_{ijkl} e_{ykl}({{\varvec{\xi }}}^{pq})\big )=0 \qquad \text {in}\quad Y \end{aligned}$$
(76)
$$\begin{aligned}&\displaystyle \Big [a_{ijkl} e_{ykl}({{\varvec{\xi }}}^{pq}) N_j\Big ] = - \Big [a_{ijkl} E^{pq}_{kl} N_j\Big ] \end{aligned}$$
(77)
$$\begin{aligned}&\displaystyle N_i a_{ijkl} \big (e_{ykl}({{\varvec{\xi }}}^{pq}) + E^{pq}_{kl} \big ) N_j < 0 \end{aligned}$$
(78)
$$\begin{aligned}&\displaystyle \big \vert T_i a_{ijkl} \big (e_{ykl}({{\varvec{\xi }}}^{pq}) + E^{pq}_{kl} \big ) N_j \big \vert = - {\mu }_\mathrm{f} N_i a_{ijkl} \big (e_{ykl}({{\varvec{\xi }}}^{pq}) + E^{pq}_{kl} \big ) N_j \end{aligned}$$
(79)
$$\begin{aligned}&\displaystyle \big [{\xi }^{pq}_i N_i\big ] = 0 \end{aligned}$$
(80)

The function \({\varvec{\phi }}\) is the solution of the boundary-value problem:

$$\begin{aligned}&\displaystyle \frac{\partial }{\partial y_j}\big (a_{ijkl} e_{ykl}({{\varvec{\phi }}})\big )=0 \qquad \text {in}\quad Y \end{aligned}$$
(81)
$$\begin{aligned}&\displaystyle \Big [a_{ijkl} e_{ykl}({{\varvec{\phi }}}) N_j\Big ] = \Big [b_{ij} N_j\Big ] \end{aligned}$$
(82)
$$\begin{aligned}&\displaystyle N_i \big ( a_{ijkl} e_{ykl}({{\varvec{\phi }}}) - b_{ij} \big ) N_j < 0 \end{aligned}$$
(83)
$$\begin{aligned}&\displaystyle \big \vert T_i \big ( a_{ijkl} e_{ykl}({{\varvec{\phi }}}) - b_{ij} \big ) N_j \big \vert = - {\mu }_\mathrm{f} N_i \big ( a_{ijkl} e_{ykl}({{\varvec{\phi }}}) - b_{ij} \big ) N_j \end{aligned}$$
(84)
$$\begin{aligned}&\displaystyle \big [{\phi }_i N_i\big ] = 0 \end{aligned}$$
(85)

And for the function \(\theta \) we obtain the cell problem:

$$\begin{aligned}&\displaystyle -k \Big (\frac{\partial ^2 \theta }{\partial y_1^2} + \frac{\partial ^2 \theta }{\partial y_2^2} \Big )=0 \qquad \text {in}\quad Y \end{aligned}$$
(86)
$$\begin{aligned}&\displaystyle \Big [\frac{\partial \theta }{\partial y_2}\Big ] = 0 ; \qquad [\theta ] = 0 \quad \text {on}\quad CY \end{aligned}$$
(87)
$$\begin{aligned}&\displaystyle \lim _{r \rightarrow 0}\int _{\varGamma Y_{r}}-k \Big (\frac{\partial \theta }{\partial y_1}n_1 + \frac{\partial \theta }{\partial y_2}n_2 \Big ) \mathrm{d}s_{y} = 0 \quad \text {at} \ {(y_{1},y_{2})= \left( \pm \frac{\mathrm{d} L_\mathrm{c}}{2},0\right) } \end{aligned}$$
(88)

As concerns the expressions of the homogenized coefficients, we obtain a thermal modulus \( S^{*} \) given by the formula:

$$\begin{aligned} {S}^{*}=\frac{1}{L_\mathrm{c}^2}\int _{Y} b_{ij} e_{yij} ({{\varvec{\phi }}})\mathrm{d}y \end{aligned}$$
(89)

The effective elastic moduli \(C^{\varrho }_{ijpq}\) are computed with the cell solutions as:

$$\begin{aligned} C^{\varrho }_{ijpq}=\frac{1}{L_\mathrm{c}^2}\int _{Y} a_{ijkl} \big ( E^{pq}_{kl} + e_{ykl}({{\varvec{\xi }}}^{pq})\big ) \mathrm{d}y \end{aligned}$$
(90)

and the homogenized mass density:

$$\begin{aligned} {\rho }^\mathrm{eff}=\frac{1}{\vert Y \vert }\int _{Y} \rho \mathrm{d}y \end{aligned}$$
(91)

For the effective thermoelastic coupling coefficients we obtain:

$$\begin{aligned} {\beta }^{\varrho }_{pq}= & {} \frac{1}{L_\mathrm{c}^2}\int _{Y} b_{ij}(E^{pq}_{ij} + e_{yij} ({{\varvec{\xi }}}^{pq}))\mathrm{d}y \end{aligned}$$
(92)
$$\begin{aligned} {\vartheta }_{ij}= & {} \frac{1}{L_\mathrm{c}^2}\int _{Y} \big ( b_{ij}-a_{ijkl}e_{ykl}({{\varvec{\phi }}}) \big )\mathrm{d}y \end{aligned}$$
(93)

The homogenized thermal conduction components are:

$$\begin{aligned}&\displaystyle k^\mathrm{eff}_{11}=\frac{1}{\vert Y \vert }\int _{Y} k \mathrm{d}y ; \quad k^\mathrm{eff}_{12}=\frac{1}{\vert Y \vert }\int _{Y} k \frac{\partial \theta }{\partial y_1} \mathrm{d}y ; \nonumber \\&\displaystyle k^\mathrm{eff}_{22}=\frac{1}{\vert Y \vert }\int _{Y} k \Big ( 1+\frac{\partial \theta }{\partial y_2} \Big ) \mathrm{d}y \end{aligned}$$
(94)

As explained in [53], a particular system of generators for the cell problem is necessary to respect the frictional contact conditions on the crack lips. The construction is specific to the present orientation of microcracks. The macroscopic strains \(e_{xij}(\mathbf{u}^{(0)})\) are linear combinations of the elements of the system of macroscopic strains generators \(\mathbf{E}^{pq}\):

$$\begin{aligned} e_{xij}(\mathbf{u}^{(0)}) = {\varrho }_{pq}(\mathbf{u}^{(0)}) E^{pq}_{ij} \end{aligned}$$
(95)

where \(\mathbf{E}^{pq}\) has the form:

$$\begin{aligned} \displaystyle \mathbf{E}^{11} = \begin{pmatrix} \displaystyle -\frac{1}{\gamma } &{} &{} &{} 0 \\ \\ 0 &{} &{} &{} 0 \end{pmatrix} ;\quad&\displaystyle \mathbf{E}^{12} = \begin{pmatrix} \displaystyle 0 &{} &{} \displaystyle -\frac{1}{\gamma } \\ \\ \displaystyle -\frac{1}{\gamma } &{} &{} \displaystyle -\frac{1}{2 \gamma } \end{pmatrix} ;\quad&\displaystyle \mathbf{E}^{22} = \begin{pmatrix} \displaystyle 0 &{} &{} \displaystyle -\frac{1}{\gamma } \\ \\ \displaystyle -\frac{1}{\gamma } &{} &{} \displaystyle -\frac{1}{\gamma } \end{pmatrix} \qquad \end{aligned}$$
(96)

and \({\varrho }_{pq}(\mathbf{u}^{(0)})\) are defined as:

$$\begin{aligned} {\varrho }_{11}(\mathbf{u}^{(0)})= & {} - \gamma e_{x11}(\mathbf{u}^{(0)}); \quad {\varrho }_{12}(\mathbf{u}^{(0)}) = \gamma \big ( e_{x22}(\mathbf{u}^{(0)}) - e_{x12}(\mathbf{u}^{(0)}) \big ); \qquad \nonumber \\ {\varrho }_{22}(\mathbf{u}^{(0)})= & {} \gamma \big ( e_{x12}(\mathbf{u}^{(0)}) - 2 e_{x22}(\mathbf{u}^{(0)}) \big ) \end{aligned}$$
(97)

In (46) the coefficients \(\beta _{ij}\) are obtained as linear combination of \(\beta ^{\varrho }_{ij}\) using Eq. (97):

$$\begin{aligned} \displaystyle \beta _{11} = -\gamma \beta ^{\varrho }_{11}; \quad \beta _{12} = \frac{\gamma }{2} (\beta ^{\varrho }_{22} - 2 \beta ^{\varrho }_{12}); \quad \beta _{22} = 2 \gamma (\beta ^{\varrho }_{12} - \beta ^{\varrho }_{22}) \end{aligned}$$
(98)

Using the equality \(b_{ij} = \alpha a_{ijkl} \delta _{kl} \), we can write:

$$\begin{aligned} {\beta }^{\varrho }_{pq}= \alpha C^{\varrho }_{ijpq} \delta _{ij} \end{aligned}$$
(99)

This gives:

$$\begin{aligned} \displaystyle \beta ^{\varrho }_{11}= & {} \alpha \big (C^{\varrho }_{1111} + C^{\varrho }_{2211} \big ) ; \quad \beta ^{\varrho }_{12} = \alpha \big (C^{\varrho }_{1112} + C^{\varrho }_{2212} \big ) ; \nonumber \\ \displaystyle \beta ^{\varrho }_{22}= & {} \alpha \big (C^{\varrho }_{1122} + C^{\varrho }_{2222} \big ) \end{aligned}$$
(100)

Finally we obtain \(\beta _{ij}\) as linear combination of \(C^{\varrho }_{ijpq}\):

$$\begin{aligned} \displaystyle \beta _{11}= & {} -\gamma \alpha \big (C^{\varrho }_{1111} + C^{\varrho }_{2211} \big ); \nonumber \\ \displaystyle \beta _{12}= & {} \frac{\gamma }{2} \alpha \big (C^{\varrho }_{1122} + C^{\varrho }_{2222} - 2 (C^{\varrho }_{1112} + C^{\varrho }_{2212} ) \big ); \nonumber \\ \displaystyle \beta _{22}= & {} 2 \gamma \alpha \big ( C^{\varrho }_{1112} + C^{\varrho }_{2212} - C^{\varrho }_{1122} -C^{\varrho }_{2222} \big ) \end{aligned}$$
(101)

The coefficients \(C_{ijpq}\) in Eq. (47) are linear combination of \(C^{\varrho }_{ijpq}\):

$$\begin{aligned} \displaystyle C_{ij11}= & {} -\gamma C^{\varrho }_{ij11}; \quad C_{ij12} = \frac{\gamma }{2} (C^{\varrho }_{ij22} - 2 C^{\varrho }_{ij12}); \nonumber \\ \displaystyle C_{ij22}= & {} 2 \gamma (C^{\varrho }_{ij12} - C^{\varrho }_{ij22}) \end{aligned}$$
(102)

Appendix C: Construction of the damage law

In this appendix we give details about the procedure used to obtain the damage law presented in Sect. 4.

We first prove energy balance relation (50). Starting from similar cell problems as the one in Sect. 3 for the microscopic corrector \(\mathbf{u}^{(1)}\), in [15, 53] the following energy balance has been established:

$$\begin{aligned}&\dfrac{\mathrm{d}}{\mathrm{d}t}\int _{Y}\frac{1}{2}a_{ijkl} e_{ykl}(\mathbf{u}^{(1)}) e_{yij}(\mathbf{u}^{(1)})\mathrm{d}y + \frac{\mathrm{d}d}{\mathrm{d}t} {L_\mathrm{c}} {{\mathcal {G}}}^{(1)} \nonumber \\&\quad = \int _{CY} a_{ijkl} e_{ykl}(\mathbf{u}^{(1)})N_j \left[ {\dot{u}}_i^{(1)}\right] \mathrm{d}s_y \end{aligned}$$
(103)

The equivalent form of Eq. (70):

$$\begin{aligned} \frac{\partial }{\partial y_j}\Big ( a_{ijkl}e_{xkl}(\mathbf{u}^{(0)}) - b_{ij}(T^{(0)} - T_0) \Big ) = 0 \end{aligned}$$
(104)

multiplied by \({{\dot{u}}}^{(1)}_i\) and integrated over Y leads to:

$$\begin{aligned}&\displaystyle \int _{CY} \big ( a_{ijkl}e_{xkl}(\mathbf{u}^{(0)}) - b_{ij}(T^{(0)} - T_0) \big ) N_j \Big [{{\dot{u}}}^{(1)}_i\Big ] \mathrm{d}s_y \nonumber \\&=\displaystyle \int _{Y} \big ( a_{ijkl}e_{xkl}(\mathbf{u}^{(0)}) - b_{ij}(T^{(0)} - T_0) \big ) e_{yij}({\dot{\mathbf{u}}}^{(1)}) \mathrm{d}y \end{aligned}$$
(105)

Combination of relations (103) and (105) gives:

$$\begin{aligned}&\int _{CY} \Big (a_{ijkl} \big ( e_{xkl}(\mathbf{u}^{(0)}) + e_{ykl}(\mathbf{u}^{(1)}) \big ) - b_{ij}(T^{(0)} -T_0) \Big ) N_j \left[ {\dot{u}}_i^{(1)}\right] \mathrm{d}s_y \nonumber \\&\quad = \frac{\mathrm{d}d}{\mathrm{d}t} {L_\mathrm{c}} {{\mathcal {G}}}^{(1)} + \dfrac{\mathrm{d}}{\mathrm{d}t}\int _{Y} \frac{1}{2}a_{ijkl} e_{ykl}(\mathbf{u}^{(1)}) e_{yij}(\mathbf{u}^{(1)})\mathrm{d}y \qquad \nonumber \\&\qquad + \int _{Y} \big ( a_{ijkl} e_{xkl}(\mathbf{u}^{(0)}) - b_{ij}(T^{(0)} -T_0) \big )e_{yij}({\dot{\mathbf{u}}}^{(1)}) \mathrm{d}y \end{aligned}$$
(106)

Using the Reynolds transport theorem [52] together with the singularity of the \(\mathbf{u}^{(1)}\) field, for the last integral in (106) we get:

$$\begin{aligned}&\int _{Y} \big ( a_{ijkl} e_{xkl}(\mathbf{u}^{(0)}) - b_{ij}(T^{(0)} -T_0) \big )e_{yij}({\dot{\mathbf{u}}}^{(1)}) \mathrm{d}y \nonumber \\&\quad = \dfrac{\mathrm{d}}{\mathrm{d}t}\int _{Y} \big ( a_{ijkl} e_{xkl}(\mathbf{u}^{(0)}) - b_{ij}(T^{(0)} -T_0) \big )e_{yij}(\mathbf{u}^{(1)}) \mathrm{d}y \quad \nonumber \\&\qquad - \int _{Y} \big ( a_{ijkl} e_{xkl}({\dot{\mathbf{u}}}^{(0)}) - b_{ij} {\dot{T}}^{(0)} \big )e_{yij}(\mathbf{u}^{(1)}) \mathrm{d}y \end{aligned}$$
(107)

such that (106) becomes:

$$\begin{aligned}&\int _{CY} \Big (a_{ijkl} \big ( e_{xkl}(\mathbf{u}^{(0)}) + e_{ykl}(\mathbf{u}^{(1)}) \big ) - b_{ij}(T^{(0)} -T_0) \Big ) N_j \left[ {\dot{u}}_i^{(1)}\right] \mathrm{d}s_y - \frac{\mathrm{d}d}{\mathrm{d}t} {L_\mathrm{c}} {{\mathcal {G}}}^{(1)} \nonumber \\&\qquad -\frac{1}{2} \dfrac{\mathrm{d}}{\mathrm{d}t}\int _{Y} \Big ( a_{ijkl} \big (e_{xkl}(\mathbf{u}^{(0)}) + e_{ykl}(\mathbf{u}^{(1)}) \big ) - b_{ij}(T^{(0)} -T_0) \Big )e_{yij}(\mathbf{u}^{(1)}) \mathrm{d}y \nonumber \\&\quad = \frac{1}{2} \dfrac{\mathrm{d}}{\mathrm{d}t}\int _{Y} \big ( a_{ijkl} e_{xkl}(\mathbf{u}^{(0)}) - b_{ij}(T^{(0)} -T_0) \big )e_{yij}(\mathbf{u}^{(1)}) \mathrm{d}y \nonumber \\&\qquad - \int _{Y} \big ( a_{ijkl} e_{xkl}({\dot{\mathbf{u}}}^{(0)}) - b_{ij} {\dot{T}}^{(0)} \big )e_{yij}(\mathbf{u}^{(1)}) \mathrm{d}y \end{aligned}$$
(108)

On the other hand, we can rewrite Eq. (29) as:

$$\begin{aligned} \frac{\partial }{\partial y_j}\Big ( a_{ijkl} \big (e_{xkl}(\mathbf{u}^{(0)}) + e_{ykl}(\mathbf{u}^{(1)}) \big ) - b_{ij}(T^{(0)} - T_0) \Big ) = 0 \end{aligned}$$
(109)

Multiplication by \(u_i^{(1)}\) and integration on Y give:

$$\begin{aligned}&\int _{Y} \Big ( a_{ijkl} \big (e_{xkl}(\mathbf{u}^{(0)}) + e_{ykl}(\mathbf{u}^{(1)})\big ) - b_{ij}(T^{(0)} - T_0) \Big ) e_{yij}(\mathbf{u}^{(1)}) \mathrm{d}y \nonumber \\&\quad = \int _{CY} \Big ( a_{ijkl} \big (e_{xkl}(\mathbf{u}^{(0)}) + e_{ykl}(\mathbf{u}^{(1)})\big ) - b_{ij}(T^{(0)} - T_0) \Big ) N_j \Big [{u}^{(1)}_i\Big ] \mathrm{d}s_y \end{aligned}$$
(110)

This identity can be used in (108) to obtain energy relation (50).

Let us now prove damage relations (5153). From the expression of \(\mathbf{u}^{(1)}\) in (38), we deduce the following relations:

$$\begin{aligned} \int _Y a_{ijkl}e_{yij}(\mathbf{u}^{(1)})\mathrm{d}y= & {} \int _Y a_{ijkl}e_{yij}({{\varvec{\xi }}}^{pq})\mathrm{d}y \varrho _{pq}(\mathbf{u}^{(0)}) \nonumber \\&+ \int _Y a_{ijkl}e_{yij}({\varvec{\phi }})\mathrm{d}y(T^{(0)} - T_0) \end{aligned}$$
(111)
$$\begin{aligned} \int _Y b_{ij}e_{yij}(\mathbf{u}^{(1)})\mathrm{d}y= & {} \int _Y b_{ij}e_{yij}({{\varvec{\xi }}}^{pq})\mathrm{d}y \varrho _{pq}(\mathbf{u}^{(0)}) \nonumber \\&+ \int _Y b_{ij}e_{yij}({\varvec{\phi }})\mathrm{d}y(T^{(0)} - T_0) \end{aligned}$$
(112)

And using the expressions of effective coefficients (90), (92), (93) and (89),we deduce:

$$\begin{aligned} \int _Y a_{ijkl}e_{yij}({{\varvec{\xi }}}^{pq})\mathrm{d}y= & {} L_\mathrm{c}^2 C^{\varrho }_{klpq} - a_{klij} E^{pq}_{ij} \end{aligned}$$
(113)
$$\begin{aligned} \int _Y b_{ij}e_{yij}({{\varvec{\xi }}}^{pq})\mathrm{d}y= & {} \alpha \delta _{kl} \big ( L_\mathrm{c}^2 C^{\varrho }_{klpq} - a_{klij} E^{pq}_{ij} \big ) \end{aligned}$$
(114)
$$\begin{aligned} \int _Y a_{ijkl}e_{yij}({{\varvec{\phi }}})\mathrm{d}y= & {} b_{kl} - L_\mathrm{c}^2 \vartheta _{kl} \end{aligned}$$
(115)
$$\begin{aligned} \int _Y b_{ij}e_{yij}({{\varvec{\phi }}})\mathrm{d}y= & {} L_\mathrm{c}^2 S^* \end{aligned}$$
(116)

Replacing Eqs. (113116) in (111112) gives:

$$\begin{aligned}&\displaystyle \int _Y a_{ijkl}e_{yij}(\mathbf{u}^{(1)})\mathrm{d}y = \big ( L_\mathrm{c}^2 C^{\varrho }_{klpq} - a_{klij} E^{pq}_{ij} \big ) \varrho _{pq}(\mathbf{u}^{(0)}) \nonumber \\&\quad \displaystyle + \big ( b_{kl} - L_\mathrm{c}^2 \vartheta _{kl} \big )(T^{(0)} - T_0) \end{aligned}$$
(117)
$$\begin{aligned}&\int _Y b_{ij}e_{yij}(\mathbf{u}^{(1)})\mathrm{d}y = \alpha \delta _{kl} \big ( L_\mathrm{c}^2 C^{\varrho }_{klpq} - a_{klij} E^{pq}_{ij} \big ) \varrho _{pq}(\mathbf{u}^{(0)}) \nonumber \\&\quad + L_\mathrm{c}^2 S^* (T^{(0)} - T_0) \end{aligned}$$
(118)

With relations (117) and (118), we can calculate the first term in the right side of (50) to obtain:

$$\begin{aligned}&\displaystyle \dfrac{1}{2}\dfrac{\mathrm{d}}{\mathrm{d}t}\int _{Y} \big ( a_{ijkl} e_{xkl}(\mathbf{u}^{(0)}) - b_{ij}(T^{(0)} -T_0) \big )e_{yij}(\mathbf{u}^{(1)}) d_y \nonumber \\&\quad =\displaystyle \dfrac{1}{2} L_\mathrm{c}^2 \dfrac{\mathrm{d}C^{\varrho }_{klpq}}{\mathrm{d}d} \dfrac{\mathrm{d}d}{\mathrm{d}t} \varrho _{pq}(\mathbf{u}^{(0)}) \varrho _{mn}(\mathbf{u}^{(0)}) E^{mn}_{kl} \nonumber \\&\qquad \displaystyle - \dfrac{1}{2} L_\mathrm{c}^2 \dfrac{\mathrm{d} {\vartheta }_{kl}}{\mathrm{d}d} \dfrac{\mathrm{d}d}{\mathrm{d}t} (T^{(0)} - T_0) \varrho _{mn}(\mathbf{u}^{(0)}) E^{mn}_{kl} \nonumber \\&\qquad \displaystyle - \dfrac{1}{2} L_\mathrm{c}^2 \dfrac{\mathrm{d}C^{\varrho }_{klpq}}{\mathrm{d}d} \dfrac{\mathrm{d}d}{\mathrm{d}t} (T^{(0)} - T_0) \alpha \delta _{kl} \varrho _{pq}(\mathbf{u}^{(0)}) \nonumber \\&\qquad \displaystyle - \dfrac{1}{2} L_\mathrm{c}^2 \dfrac{\mathrm{d} S^*}{\mathrm{d}d} \dfrac{\mathrm{d}d}{\mathrm{d}t} (T^{(0)} - T_0)^2 \nonumber \\&\qquad \displaystyle + \dfrac{1}{2} \big ( L_\mathrm{c}^2 C^{\varrho }_{klpq} - a_{klij} E^{pq}_{ij} \big ) \big ( \varrho _{pq}(\dot{\mathbf{u}}^{(0)}) \varrho _{mn}(\mathbf{u}^{(0)}) - \varrho _{pq}(\mathbf{u}^{(0)}) \varrho _{mn}(\dot{\mathbf{u}}^{(0)}) \big ) E^{mn}_{kl} \nonumber \\&\qquad \displaystyle + \dfrac{1}{2} \big ( b_{kl} - L_\mathrm{c}^2 {\vartheta }_{kl} \big ) \big ( (T^{(0)} - T_0) \varrho _{mn}(\dot{\mathbf{u}}^{(0)}) + \varrho _{mn}(\mathbf{u}^{(0)}) {\dot{T}}^{(0)} \big ) E^{mn}_{kl} \nonumber \\&\qquad \displaystyle - \dfrac{1}{2} \alpha \delta _{kl} \big ( L_\mathrm{c}^2 C^{\varrho }_{klpq} - a_{klij} E^{pq}_{ij} \big ) \big ( (T^{(0)} - T_0) \varrho _{pq}(\dot{\mathbf{u}}^{(0)}) + \varrho _{pq}(\mathbf{u}^{(0)}) {\dot{T}}^{(0)}\big ) \nonumber \\&\qquad \displaystyle - L_\mathrm{c}^2 S^* {\dot{T}}^{(0)} (T^{(0)} - T_0) \; \end{aligned}$$
(119)

In the same way, we obtain for the second term in the right side of (50):

$$\begin{aligned}&\displaystyle \int _{Y} \big ( a_{ijkl} e_{xkl}({\dot{\mathbf{u}}}^{(0)}) - b_{ij} {\dot{T}}^{(0)} \big )e_{yij}(\mathbf{u}^{(1)}) d_y \nonumber \\&\quad =\displaystyle \big ( L_\mathrm{c}^2 C^{\varrho }_{klpq} - a_{klij} E^{pq}_{ij} \big ) \varrho _{pq}(\mathbf{u}^{(0)}) \varrho _{mn}(\dot{\mathbf{u}}^{(0)}) E^{mn}_{kl} \nonumber \\&\qquad \displaystyle + \big ( b_{kl} - L_\mathrm{c}^2 {\vartheta }_{kl} \big ) (T^{(0)} - T_0) \varrho _{mn}(\dot{\mathbf{u}}^{(0)}) E^{mn}_{kl} \nonumber \\&\qquad \displaystyle - \alpha \delta _{kl} \big ( L_\mathrm{c}^2 C^{\varrho }_{klpq} - a_{klij} E^{pq}_{ij} \big ) \varrho _{pq}(\mathbf{u}^{(0)}) {\dot{T}}^{(0)} - L_\mathrm{c}^2 S^* {\dot{T}}^{(0)} (T^{(0)} - T_0) \end{aligned}$$
(120)

Replacing (119, 120) in (50) we obtain:

$$\begin{aligned}&\displaystyle \dfrac{1}{L_\mathrm{c}^2} \int _{CY} \sigma ^{(0)}_{ij} N_j \left[ {\dot{u}}_i^{(1)}\right] \mathrm{d}s_y - \dfrac{1}{2L_\mathrm{c}^2} \dfrac{\mathrm{d}}{\mathrm{d}t} \int _{CY} \sigma ^{(0)}_{ij} N_j \Big [{u}^{(1)}_i\Big ] \mathrm{d}s_y - \dfrac{1}{L_\mathrm{c}} \frac{\mathrm{d}d}{\mathrm{d}t} {{\mathcal {G}}}^{(1)} \nonumber \\&\quad =\displaystyle \dfrac{\mathrm{d}d}{\mathrm{d}t} \bigg ( \dfrac{1}{2} \dfrac{\mathrm{d}C^{\varrho }_{klpq}}{\mathrm{d}d} \varrho _{pq}(\mathbf{u}^{(0)}) \varrho _{mn}(\mathbf{u}^{(0)}) E^{mn}_{kl} - \dfrac{1}{2} \dfrac{\mathrm{d} {\vartheta }_{kl}}{\mathrm{d}d} (T^{(0)} - T_0) \varrho _{mn}(\mathbf{u}^{(0)}) E^{mn}_{kl} \nonumber \\&\qquad - \dfrac{1}{2} \dfrac{\mathrm{d}C^{\varrho }_{klpq}}{\mathrm{d}d} (T^{(0)} - T_0) \alpha \delta _{kl} \varrho _{pq}(\mathbf{u}^{(0)}) - \dfrac{1}{2} \dfrac{\mathrm{d} S^*}{\mathrm{d}d} (T^{(0)} - T_0)^2 \bigg ) \nonumber \\&\qquad + \displaystyle \dfrac{1}{2 L_\mathrm{c}^2}\int _{CY} a_{ijkl}E^{mn}_{kl}N_j \big [ \xi ^{pq}_i \big ] \mathrm{d}s_y \big ( \varrho _{pq}(\dot{\mathbf{u}}^{(0)}) \varrho _{mn}(\mathbf{u}^{(0)}) - \varrho _{pq}(\mathbf{u}^{(0)}) \varrho _{mn}(\dot{\mathbf{u}}^{(0)}) \big ) \nonumber \\&\qquad + \displaystyle \dfrac{1}{2 L_\mathrm{c}^2}\int _{CY} a_{ijkl}E^{mn}_{kl}N_j \big [ \phi _i \big ] \mathrm{d}s_y \big ( \varrho _{mn}(\mathbf{u}^{(0)}) {\dot{T}}^{(0)} - (T^{(0)} - T_0) \varrho _{mn}(\dot{\mathbf{u}}^{(0)}) \big ) \nonumber \\&\qquad + \displaystyle \dfrac{1}{2 L_\mathrm{c}^2}\int _{CY} b_{ij} N_j \big [ \xi ^{pq}_i \big ] \mathrm{d}s_y \big ( \varrho _{pq}(\mathbf{u}^{(0)}) {\dot{T}}^{(0)} - (T^{(0)} - T_0) \varrho _{pq}(\dot{\mathbf{u}}^{(0)}) \big ) \end{aligned}$$
(121)

With the expressions of \(\mathbf{u}^{(1)}\) and \(\sigma _{ij}^{(0)}\) we calculate the second term in the left side of (121) as:

$$\begin{aligned}&\displaystyle \dfrac{1}{2L_\mathrm{c}^2} \dfrac{\mathrm{d}}{\mathrm{d}t} \int _{CY} \sigma ^{(0)}_{ij} N_j \left[ u_i^{(1)}\right] \mathrm{d}s_y = \displaystyle \bigg ( \dfrac{1}{2} \dfrac{\mathrm{d}{{\mathcal {Z}}}^{\varrho 1}_{mnpq}}{\mathrm{d}d} \varrho _{mn}(\mathbf{u}^{(0}) \varrho _{pq}(\mathbf{u}^{(0})\nonumber \\&\quad \displaystyle + \dfrac{1}{2} \Big ( \dfrac{\mathrm{d}{{\mathcal {Z}}}^{\varrho 2}_{mn}}{\mathrm{d}d} + \dfrac{\mathrm{d}{{\mathcal {Z}}}^{\varrho 3}_{mn}}{\mathrm{d}d} \Big ) \varrho _{mn}(\mathbf{u}^{(0}) (T^{(0)} - T_0) + \dfrac{1}{2} \dfrac{\mathrm{d}{{\mathcal {Z}}}^4}{\mathrm{d}d} (T^{(0)} - T_0)^2 \bigg ) \dfrac{\mathrm{d}d}{\mathrm{d}t} \nonumber \\&\quad \displaystyle + \dfrac{1}{2} {{\mathcal {Z}}}^{\varrho 1}_{mnpq} \big ( \varrho _{mn}(\dot{\mathbf{u}}^{(0}) \varrho _{pq}(\mathbf{u}^{(0}) + \varrho _{mn}(\mathbf{u}^{(0}) \varrho _{pq}(\dot{\mathbf{u}}^{(0}) \big ) \nonumber \\&\quad \displaystyle + \dfrac{1}{2} \big ( {{\mathcal {Z}}}^{\varrho 2}_{mn} + {{\mathcal {Z}}}^{\varrho 3}_{mn} \big ) \big ( \varrho _{mn}(\dot{\mathbf{u}}^{(0}) (T^{(0)} - T_0) + \varrho _{mn}(\mathbf{u}^{(0}) {\dot{T}}^{(0)} \big ) \nonumber \\&\quad \displaystyle + {{\mathcal {Z}}}^4 {\dot{T}}^{(0)} (T^{(0)} - T_0) \end{aligned}$$
(122)

where

$$\begin{aligned} \displaystyle {{\mathcal {Z}}}_{mnpq}^{\varrho 1}= & {} \dfrac{1}{L_\mathrm{c}^2} \int _{CY} a_{ijkl} \big ( E^{mn}_{kl} + e_{ykl} ({{\varvec{\xi }}}^{mn}) \big ) N_j \left[ \xi _i^{pq}\right] \mathrm{d}s_y \end{aligned}$$
(123)
$$\begin{aligned} \displaystyle {{\mathcal {Z}}}_{mn}^{\varrho 2}= & {} \dfrac{1}{L_\mathrm{c}^2} \int _{CY} a_{ijkl} \big ( E^{mn}_{kl} + e_{ykl} ({{\varvec{\xi }}}^{mn}) \big ) N_j \left[ \phi _i \right] \mathrm{d}s_y \end{aligned}$$
(124)
$$\begin{aligned} \displaystyle {{\mathcal {Z}}}_{mn}^{\varrho 3}= & {} -\dfrac{1}{L_\mathrm{c}^2}\int _{CY} \big ( b_{ij} - a_{ijkl} e_{ykl} ({{\varvec{\phi }}}) \big ) N_j \big [ \xi ^{mn}_i \big ] \mathrm{d}s_y \end{aligned}$$
(125)
$$\begin{aligned} \displaystyle {{\mathcal {Z}}}^4= & {} - \dfrac{1}{L_\mathrm{c}^2} \int _{CY} \big ( b_{ij} - a_{ijkl} e_{ykl} ({{\varvec{\phi }}}) \big ) N_j \left[ \phi _i\right] \mathrm{d}s_y \end{aligned}$$
(126)

When the time derivative of \(\mathbf{u}^{(1)}\):

$$\begin{aligned} \displaystyle \dot{\mathbf{u}}^{(1)}&= \dot{{{\varvec{\xi }}}}^{pq}(\mathbf{y}) {\varrho }_{pq}(\mathbf{u}^{(0)})(\mathbf{x},t) + {{\varvec{\xi }}}^{pq}(\mathbf{y}) {\varrho }_{pq}(\dot{\mathbf{u}}^{(0)})(\mathbf{x},t) \nonumber \\&\quad + \dot{{{\varvec{\phi }}}}(\mathbf{y})(T^{(0)}{(\mathbf{x}}, t)-T_0) + {{\varvec{\phi }}}(\mathbf{y}){\dot{T}}^{(0)}{(\mathbf{x}}, t) \end{aligned}$$
(127)

is used in the first integral in the left member of (121) one obtains:

$$\begin{aligned}&\displaystyle \dfrac{1}{L_\mathrm{c}^2} \int _{CY} \sigma ^{(0)}_{ij} N_j \left[ {\dot{u}}_i^{(1)}\right] \mathrm{d}s_y = \Big ( I^{\varrho 2}_{mnpq} \varrho _{mn}(\mathbf{u}^{(0}) \varrho _{pq}(\mathbf{u}^{(0}) \nonumber \\&\quad \displaystyle + J^{\varrho 2}_{mn} \varrho _{mn}(\mathbf{u}^{(0}) (T^{(0)} - T_0) - P^2 (T^{(0)} - T_0)^2 \Big ) \dfrac{\mathrm{d}d}{\mathrm{d}t} \nonumber \\&\quad \displaystyle + {{\mathcal {Z}}}^{\varrho 1}_{mnpq} \varrho _{mn}(\mathbf{u}^{(0}) \varrho _{pq}(\dot{\mathbf{u}}^{(0}) + {{\mathcal {Z}}}^{\varrho 2}_{mn} \varrho _{mn}(\mathbf{u}^{(0}) {\dot{T}}^{(0)} \nonumber \\&\quad \displaystyle + {{\mathcal {Z}}}^{\varrho 3}_{mn} \varrho _{mn}(\dot{\mathbf{u}}^{(0}) (T^{(0)} - T_0) + {{\mathcal {Z}}}^4 {\dot{T}}^{(0)} (T^{(0)} - T_0) \end{aligned}$$
(128)

with

$$\begin{aligned} \displaystyle I^{\varrho 2}_{mnpq}&= \dfrac{1}{L_\mathrm{c}^2} \int _{CY} a_{ijkl} \big ( E^{mn}_{kl} + e_{ykl} ({{\varvec{\xi }}}^{mn}) \big ) N_j \left[ \dfrac{\mathrm{d} \xi _i^{pq}}{\mathrm{d}d} \right] \mathrm{d}s_y \end{aligned}$$
(129)
$$\begin{aligned} \displaystyle J^{\varrho 2}_{mn}&= \dfrac{1}{L_\mathrm{c}^2} \int _{CY} a_{ijkl} \big ( E^{mn}_{kl} + e_{ykl} ({{\varvec{\xi }}}^{mn}) \big ) N_j \left[ \dfrac{\mathrm{d} \phi _i}{\mathrm{d}d} \right] \mathrm{d}s_y \end{aligned}$$
(130)
$$\begin{aligned}&\quad \displaystyle - \dfrac{1}{L_\mathrm{c}^2} \int _{CY} \big ( b_{ij} - a_{ijkl} e_{ykl} ({{\varvec{\phi }}}) \big ) N_j \left[ \dfrac{\mathrm{d} \xi _i^{mn}}{\mathrm{d}d}\right] \mathrm{d}s_y \nonumber \\ \displaystyle P^2&= \dfrac{1}{2L_\mathrm{c}^2} \dfrac{\mathrm{d}}{\mathrm{d}d} \int _{CY} \big ( b_{ij} - a_{ijkl} e_{ykl} ({{\varvec{\phi }}}) \big ) N_j \left[ \dfrac{\mathrm{d} \phi _i}{\mathrm{d}d} \right] \mathrm{d}s_y \end{aligned}$$
(131)

Using cell problems (76), (81) one can prove that the integral \( \int _{CY} a_{ijkl} e_{ykl} ({{\varvec{\xi }}}^{mn}) N_j \left[ \xi _i^{pq}\right] \mathrm{d}s_y\) is symmetrical in respect of the pairs mn and pq and we have

$$\begin{aligned} \displaystyle \int _{CY} a_{ijkl} e_{ykl} ({{\varvec{\xi }}}^{mn}) N_j \left[ \phi _i \right] \mathrm{d}s_y = \displaystyle \int _{CY} a_{ijkl} e_{ykl} ({{\varvec{\phi }}}) N_j \left[ \xi _i^{pq}\right] \mathrm{d}s_y \end{aligned}$$

Combination with (122) and (128) and substitution in (121) allow us to obtain the damage relation:

$$\begin{aligned}&\displaystyle \dfrac{\mathrm{d}d}{\mathrm{d}t} \bigg ( \displaystyle \dfrac{{{\mathcal {G}}}^{(1)}}{L_\mathrm{c}} + \dfrac{1}{2} \dfrac{\mathrm{d}C^{\varrho }_{klpq}}{\mathrm{d}d} \varrho _{pq}(\mathbf{u}^{(0)}) \varrho _{mn}(\mathbf{u}^{(0)}) E^{mn}_{kl} \nonumber \\&\quad \displaystyle - \dfrac{1}{2} \dfrac{\mathrm{d} {\vartheta }_{kl}}{\mathrm{d}d} (T^{(0)} - T_0) \varrho _{mn}(\mathbf{u}^{(0)}) E^{mn}_{kl} \nonumber \\&\quad \displaystyle - \dfrac{1}{2} \dfrac{\mathrm{d}C^{\varrho }_{klpq}}{\mathrm{d}d} (T^{(0)} - T_0) \alpha \delta _{kl} \varrho _{pq}(\mathbf{u}^{(0)}) - \dfrac{1}{2} \dfrac{\mathrm{d} S^*}{\mathrm{d}d} (T^{(0)} - T_0)^2 \nonumber \\&\quad \displaystyle + I^{\varrho }_{mnpq} \varrho _{mn}(\mathbf{u}^{(0}) \varrho _{pq}(\mathbf{u}^{(0}) \nonumber \\&\quad + J^{\varrho }_{mn} \varrho _{mn}(\mathbf{u}^{(0}) (T^{(0)} - T_0) - P^{\varrho } (T^{(0)} - T_0)^2 \bigg ) = 0 \end{aligned}$$
(132)

with the effective coefficients

$$\begin{aligned} \displaystyle I^{\varrho }_{mnpq}&= \dfrac{1}{2L_\mathrm{c}^2} \dfrac{\mathrm{d}}{\mathrm{d}d} \int _{CY} a_{ijkl} \big ( E^{mn}_{kl} + e_{ykl} ({{\varvec{\xi }}}^{mn}) \big ) N_j \left[ \xi _i^{pq}\right] \mathrm{d}s_y \nonumber \\&\quad \displaystyle - \dfrac{1}{L_\mathrm{c}^2} \int _{CY} a_{ijkl} \big ( E^{mn}_{kl} + e_{ykl} ({{\varvec{\xi }}}^{mn}) \big ) N_j \left[ \dfrac{\mathrm{d} \xi _i^{pq}}{\mathrm{d}d} \right] \mathrm{d}s_y \end{aligned}$$
(133)
$$\begin{aligned} \displaystyle J^{\varrho }_{mn}&= \dfrac{1}{2L_\mathrm{c}^2} \dfrac{\mathrm{d}}{\mathrm{d}d} \int _{CY} a_{ijkl} \big ( E^{mn}_{kl} + e_{ykl} ({{\varvec{\xi }}}^{mn}) \big ) N_j \left[ \phi _i \right] \mathrm{d}s_y \nonumber \\&\quad - \displaystyle \dfrac{1}{2L_\mathrm{c}^2} \dfrac{\mathrm{d}}{\mathrm{d}d} \int _{CY} \big ( b_{ij} - a_{ijkl} e_{ykl} ({{\varvec{\phi }}}) \big ) N_j \left[ \xi _i^{mn}\right] \mathrm{d}s_y \nonumber \\&\quad \displaystyle - \dfrac{1}{L_\mathrm{c}^2} \int _{CY} a_{ijkl} \big ( E^{mn}_{kl} + e_{ykl} ({{\varvec{\xi }}}^{mn}) \big ) N_j \left[ \dfrac{\mathrm{d} \phi _i}{\mathrm{d}d} \right] \mathrm{d}s_y \nonumber \\&\quad \displaystyle + \int _{CY} \big ( b_{ij} - a_{ijkl} e_{ykl} ({{\varvec{\phi }}}) \big ) N_j \left[ \dfrac{\mathrm{d} \xi _i^{mn}}{\mathrm{d}d}\right] \mathrm{d}s_y \end{aligned}$$
(134)
$$\begin{aligned} \displaystyle P&= \dfrac{1}{2L_\mathrm{c}^2} \dfrac{\mathrm{d}}{\mathrm{d}d} \int _{CY} \big ( b_{ij} - a_{ijkl} e_{ykl} ({{\varvec{\phi }}}) \big ) N_j \left[ \phi _i \right] \mathrm{d}s_y \nonumber \\&\quad \displaystyle - \dfrac{1}{L_\mathrm{c}^2} \int _{CY} \big ( b_{ij} - a_{ijkl} e_{ykl} ({{\varvec{\phi }}}) \big ) N_j \left[ \dfrac{\mathrm{d} \phi _i}{\mathrm{d}d}\right] \mathrm{d}s_y \end{aligned}$$
(135)

In Eq. (53) the coefficients \(I_{mnpq}\) and \(J_{mn}\) are linear combinations of \(I^{\varrho }_{mnpq}\) and, respectively, \(J^{\varrho }_{mn}\). For \(I_{mnpq}\) we get:

$$\begin{aligned} \displaystyle I_{1212}= & {} \dfrac{\gamma ^2}{4} \big ( I^{\varrho }_{2222} - 2 I^{\varrho }_{1222} - 2 I^{\varrho }_{2212} + 4 I^{\varrho }_{1212} \big ) \nonumber \\ \displaystyle I_{2222}= & {} 4 \gamma ^2 \big ( I^{\varrho }_{2222} - I^{\varrho }_{1222} - I^{\varrho }_{2212} + I^{\varrho }_{1212} \big ) \nonumber \\ \displaystyle I_{1222} + I_{2212}= & {} \gamma ^2 \big ( -2 I^{\varrho }_{2222} + 3 I^{\varrho }_{1222} + 3 I^{\varrho }_{2212} - 4 I^{\varrho }_{1212} \big ) \end{aligned}$$
(136)

while the other components \(I_{1111}, \; I_{1112}, \; I_{1122}, \; I_{2211}, \; I_{1211}\) are vanishing.

Similar combinations are obtained for \(I^{2}_{mnpq}\) of Eq. (61).

$$\begin{aligned} \displaystyle I^2_{1212}= & {} \dfrac{\gamma ^2}{4} \big ( I^{\varrho 2}_{2222} - 2 I^{\varrho 2}_{1222} - 2 I^{\varrho 2}_{2212} + 4 I^{\varrho 2}_{1212} \big ) \nonumber \\ \displaystyle I^2_{2222}= & {} 4 \gamma ^2 \big ( I^{\varrho 2}_{2222} - I^{\varrho 2}_{1222} - I^{\varrho 2}_{2212} + I^{\varrho 2}_{1212} \big ) \nonumber \\ \displaystyle I^2_{1222} + I^2_{2212}= & {} \gamma ^2 \big ( -2 I^{\varrho 2}_{2222} + 3 I^{\varrho 2}_{1222} + 3 I^{\varrho 2}_{2212} - 4 I^{\varrho 2}_{1212} \big ) \nonumber \\ I^2_{1111}= & {} I^2_{1112} = I^2_{1122} = I^2_{2211} = I^2_{1211} = 0 \end{aligned}$$
(137)

Expressions of \(J_{mn}\) and \(J^2_{mn}\) in definition (53) of \({{\mathcal {Y}}}_\mathrm{f}\) and, respectively, (61) are:

$$\begin{aligned}&\displaystyle J_{11}= -\gamma J^{\varrho }_{11} \, ;\quad J_{12}= \dfrac{\gamma }{2} \big ( J^{\varrho }_{22} - 2 J^{\varrho }_{12}\big ) \, ;\quad J_{22}= 2 \gamma \big ( J^{\varrho }_{12} - J^{\varrho }_{22}\big ) \end{aligned}$$
(138)
$$\begin{aligned}&\displaystyle J^2_{11}= -\gamma J^{\varrho 2}_{11} \, ;\quad J^2_{12}= \dfrac{\gamma }{2} \big ( J^{\varrho 2}_{22} - 2 J^{\varrho 2}_{12}\big ) \, ;\quad J^2_{22}= 2 \gamma \big ( J^{\varrho 2}_{12} - J^{\varrho 2}_{22}\big ) \end{aligned}$$
(139)

Finally, the coefficients \({{\mathcal {Z}}}^1_{mnpq}\), \({{\mathcal {Z}}}_{mn}^{2}\) and \({{\mathcal {Z}}}_{mn}^{3}\) in (61) are linear combinations of \({{\mathcal {Z}}}^{\varrho 1}_{mnpq}\), \({{\mathcal {Z}}}_{mn}^{\varrho 2}\) and \({{\mathcal {Z}}}_{mn}^{\varrho 3}\) correspondingly:

$$\begin{aligned} \displaystyle {{\mathcal {Z}}}^1_{1212}= & {} \dfrac{\gamma ^2}{4} \big ( {{\mathcal {Z}}}^{\varrho 1}_{2222} - 2 {{\mathcal {Z}}}^{\varrho 1}_{1222} - 2 {{\mathcal {Z}}}^{\varrho 1}_{2212} + 4 {{\mathcal {Z}}}^{\varrho 1}_{1212} \big ) \nonumber \\ \displaystyle {{\mathcal {Z}}}^1_{2222}= & {} 4 \gamma ^2 \big ( {{\mathcal {Z}}}^{\varrho 1}_{2222} - {{\mathcal {Z}}}^{\varrho 1}_{1222} - {{\mathcal {Z}}}^{\varrho 1}_{2212} + {{\mathcal {Z}}}^{\varrho 1}_{1212} \big ) \nonumber \\ \displaystyle {{\mathcal {Z}}}^1_{2212}= & {} \gamma ^2 \big ( - {{\mathcal {Z}}}^{\varrho 1}_{2222} + {{\mathcal {Z}}}^{\varrho 1}_{1222} + 2 {{\mathcal {Z}}}^{\varrho 1}_{2212} - 2 {{\mathcal {Z}}}^{\varrho 1}_{1212} \big ) \nonumber \\ \displaystyle {{\mathcal {Z}}}^1_{1222}= & {} \gamma ^2 \big ( - {{\mathcal {Z}}}^{\varrho 1}_{2222} + 2 {{\mathcal {Z}}}^{\varrho 1}_{1222} + {{\mathcal {Z}}}^{\varrho 1}_{2212} - 2 {{\mathcal {Z}}}^{\varrho 1}_{1212} \big ) \nonumber \\ {{\mathcal {Z}}}^1_{1111}= & {} {{\mathcal {Z}}}^1_{1112} = {{\mathcal {Z}}}^1_{1122} = {{\mathcal {Z}}}^1_{2211} = {{\mathcal {Z}}}^1_{1211} = 0. \end{aligned}$$
(140)
$$\begin{aligned} \displaystyle {{\mathcal {Z}}}^2_{11}= & {} -\gamma {{\mathcal {Z}}}^{\varrho 2}_{11} \, ;\quad {{\mathcal {Z}}}^2_{12}= \dfrac{\gamma }{2} \big ( {{\mathcal {Z}}}^{\varrho 2}_{22} - 2 {{\mathcal {Z}}}^{\varrho 2}_{12}\big ) \, ;\quad {{\mathcal {Z}}}^2_{22}= 2 \gamma \big ( {{\mathcal {Z}}}^{\varrho 2}_{12} - {{\mathcal {Z}}}^{\varrho 2}_{22}\big ) \end{aligned}$$
(141)
$$\begin{aligned} \displaystyle {{\mathcal {Z}}}^3_{11}= & {} -\gamma {{\mathcal {Z}}}^{\varrho 3}_{11} \, ;\quad {{\mathcal {Z}}}^3_{12}= \dfrac{\gamma }{2} \big ( {{\mathcal {Z}}}^{\varrho 3}_{22} - 2 {{\mathcal {Z}}}^{\varrho 3}_{12}\big ) \, ;\quad {{\mathcal {Z}}}^3_{22}= 2 \gamma \big ( {{\mathcal {Z}}}^{\varrho 3}_{12} - {{\mathcal {Z}}}^{\varrho 3}_{22}\big ) \end{aligned}$$
(142)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gbetchi, K., Dascalu, C. Two-scale thermomechanical damage model for dynamic shear failure in brittle solids. Continuum Mech. Thermodyn. 33, 445–473 (2021). https://doi.org/10.1007/s00161-020-00916-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00916-x

Keywords

Navigation