Skip to main content
Log in

Impact of damage on the effective properties of network materials and on bulk and surface wave propagation characteristics

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We analyze in this contribution the propagation of bulk and Rayleigh surface waves in periodic architectured materials undergoing internal damage. An elastic damageable continuum-based model is developed in the framework of the thermodynamics of irreversible processes, whereby the displacement experiences a jump across the faces of the propagating crack. The crack propagation involves an enhancement of the displacement field associated with embedded discontinuities, which remain localized within each (triangular type) finite element. The displacement discontinuity is regulated by the traction separation behavior described by an exponential cohesive model with damage hardening followed by softening. The effective mechanical properties of the overall network are evaluated versus the increasing damage. The phase velocities for the longitudinal and transverse modes are then computed continuously versus the amount of damage, considering successively the situations of symmetrically and unsymmetrically distributed damage occurrence and propagation. Simulation results show that although the crack pattern is different in these two situations, it has no impact on the evolution of the effective moduli versus global damage. The phase velocities computed based on the effective moduli decrease as damage propagates within the network; thus, it is an indicator of the amount of global damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Wicks, N., Hutchinson, J.W.: Optimal truss plates. Int. J. Solids Struct. 38(30–31), 5165–5183 (2001)

    Article  MATH  Google Scholar 

  2. Arabnejad, S., Johnston, R.B., Ann, J., Singh, B., Tanzer, M., Pasini, D.: High-strength porous biomaterials for bone replacement: a strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater. 30, 345–356 (2016)

    Article  Google Scholar 

  3. Chen, W.F.: Structural Engineering Handbook-Space Frame Structures, 3rd edn. ASME Press, New York (2000)

    Google Scholar 

  4. Heinl, P., Mu, L., Ko, C., Singer, R.F., Mu, F.A.: Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomater. 4(2), 1536–1544 (2008)

    Article  Google Scholar 

  5. Yang, L., Harrysson, O., West, H., Cormier, D.: Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing. Int. J. Solids Struct. 69, 475–490 (2015)

    Article  Google Scholar 

  6. Yang, L.: A study about size effects of 3D periodic cellular structures. In: Proceedings of the 27th Annual International Solid Freeform Fabrication (SFF) Symposium, Austin, TX (2016)

  7. Simone, A.E., Gibson, L.J.: Effects of solid distribution on the stiffness and strength of metallic foams. Acta Mater. 46(6), 2139–2150 (1998)

    Article  ADS  Google Scholar 

  8. Jin, I., Kenny, L.D., Sang, H.: U.S. patent no. 4, 973, 358, Washington, DC, U.S. Patent and Trademark Office (1990)

  9. Xiaoyu, Z., Howon, L., Todd, H.W., Maxim, S., Joshua, D., Eric, B.D., Joshua, D.K., Monika, M.B., Qi, G., Julie, A.J., Sergei, O.K., Nicholas, X.F., Christopher, M.S.: Ultralight, ultrastiff mechanical metamaterials. Science 344(6190), 1373–1377 (2014)

    Article  Google Scholar 

  10. Maiti, S.K., Gibson, L.J., Ashby, M.F.: Deformation and energy absorption diagrams for cellular solids. Acta Metall. 32(4), 1963–1975 (1984)

    Article  Google Scholar 

  11. Wang, A.-J., McDowell, D.L.: In-plane stiffness and yield strength of periodic metal honeycombs. J. Eng. Mater. Technol. 126(1), 137–156 (2004)

    Article  Google Scholar 

  12. Wallach, J.C., Gibson, L.J.: Mechanical behavior of a three-dimensional truss material. Int. J. Solids Struct. 38(40–41), 7181–7196 (2001)

    Article  MATH  Google Scholar 

  13. Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. J. Mech. Phys. Solids 49(3), 1747–1769 (2001)

    Article  ADS  MATH  Google Scholar 

  14. Wu, Y., Yang, L.: The effect of unit cell size and topology on tensile failure behavior of 2D lattice structures. Int. J. Mech. Sci. 170, 105342 (2020)

    Article  Google Scholar 

  15. Yan, C., Hao, L., Hussein, A., Young, P., Raymont, D.: Advanced lightweight 316L stainless steel cellular lattice structures fabricated via selective laser melting. Mater. Des. 55, 533–541 (2014)

    Article  Google Scholar 

  16. Smith, M., Guan, Z., Cantwell, W.J.: Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int. J. Mech. Sci. 67, 28–41 (2013)

    Article  Google Scholar 

  17. Li, S.J., Murr, L.E., Cheng, X.Y., Zhang, Z.B., Hao, Y.L., Yang, R., Medina, F., Wicker, R.B.: Compression fatigue behavior of Ti–6Al–4V mesh arrays fabricated by electron beam melting. Acta Mater. 60(3), 793–802 (2012)

    Article  ADS  Google Scholar 

  18. Deshpande, V.S., Ashby, M.F., Fleck, N.A.: Foam topology: bending versus stretching dominated architectures. Acta Mater. 49(6), 1035–1040 (2001)

    Article  ADS  Google Scholar 

  19. Yang, L., Harrysson, O., West, H., Cormier, D.: Modeling of uniaxial compression in a 3D periodic re-entrant lattice structure. J. Mater. Sci. 48(4), 1413–1422 (2013)

    Article  ADS  Google Scholar 

  20. Carneiro, V.H., Meireles, J., Puga, H.: Auxetic materials: a review. Mater. Sci. Poland 31(4), 561–571 (2013)

    Article  ADS  Google Scholar 

  21. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  22. Ashby, M.F.: The properties of foams and lattices, philosophical transactions of the royal society A: mathematical. Phys. Eng. Sci. 364(1838), 15–30 (2005)

    Google Scholar 

  23. Goda, I., Ganghoffer, J.F.: 3D plastic collapse and brittle fracture surface models of trabecular bone from asymptotic homogenization method. Int. J. Eng. Sci. 87, 58–82 (2015)

    Article  MATH  Google Scholar 

  24. Goda, I., Ganghoffer, J.F.: Construction of the effective plastic yield surfaces of vertebral trabecular bone under twisting and bending moments stresses using a 3D microstructural model. ZAMM J. Appl. Math. Mech. 97(3), 254–272 (2017)

    Article  MathSciNet  Google Scholar 

  25. Fleck, N.A., Qiu, X.M.: The damage tolerance of elastic-brittle, two-dimensional isotropic lattices. J. Mech. Phys. Solids. 55(3), 562–588 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Quintana-Alonso, I., Fleck, N.A.: Fracture of Brittle Lattice Materials: A Review, Major Accomplishments in Composite Materials and Sandwich Structures, pp. 799–816 (2010)

  27. Silva, M.J., Gibson, L.J.: The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. Int. J. Mech. Sci. 39(2), 549–563 (1997)

    Article  MATH  Google Scholar 

  28. Albuquerque, J.M., Vaz, M.F., Fortes, M.A.: Effect of missing walls on the compression behaviour of honeycombs. Scr. Mater. 41(1), 167–174 (1999)

    Article  Google Scholar 

  29. Guo, X.E., Gibson, L.J.: Behavior of intact and damaged honeycombs: a finite element study. Int. J. Mech. Sci. 41(1), 85–105 (1999)

    Article  MATH  Google Scholar 

  30. Oliver, J., Huespe, A.E., Sanchez, P.J.: A comparitive study on finite elements for capturing strong discontinuities: E-FEM versus X-FEM. Comput. Methods Appl. Mech. Eng. 195(37–40), 4732–4752 (2006)

    Article  ADS  MATH  Google Scholar 

  31. Luenberger, D.G.: Linear and Nonlinear Programming. Addison-Wesley, Reading (1984)

    MATH  Google Scholar 

  32. Strang, G.: Introduction to Applied Mathematics. Wellesley-Cambridge Press, Cambridge (1986)

    MATH  Google Scholar 

  33. Lemaitre, J.: A Course on Damage Mechanics. Springer, New York (1992)

    Book  MATH  Google Scholar 

  34. Armero, F.: Localized anisotropic damage of brittle materials. In: Onate, E., Owen, D.R.J., Hinton, E. (eds.) Computational Plasticity, Fundamentals and Applications, pp. 635–640. CIMNE, Barcelona (1997)

    Google Scholar 

  35. Do, X.N., Ibrahimbegovic, A., Brancherie, D.: Dynamics framework for 2D anisotropic continuum-discrete damage model for progressive localized failure of massive structures. Comput. Struct. 183, 14–26 (2017)

    Article  Google Scholar 

  36. Ibrahimbegovic, A., Kozar, I.: Non-linear Wilson’s brick element for finite elastic deformations of three-dimensional solids. Commun. Numer. Methods Eng. 11(3), 655–664 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Brancherie, D.: Modèles continus et “discrets” pour les problèmes de localisation et de rupture fragile et/ou ductile. PhD Thesis, École Normale Supérieure de Cachan, France (2003)

  38. Brancherie, D., Ibrahimbegovic, A.: Novel anisotropic continuum-discrete damage model capable of representing localized failure of massive structures: part I—theoretical formulation and numerical implementation. Eng. Comput. Int. J. Comput. Aided Eng. 26, 100–127 (2009)

    MATH  Google Scholar 

  39. Simo, J.C., Rifai, M.S.: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 29(3), 1595–1638 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ibrahimbegovic, A., Wilson, E.L.: A modified method of incompatible modes. Commun. Appl. Numer. Methods 7(3), 187–194 (1991)

    Article  MATH  Google Scholar 

  41. Ibrahimbegovic, A.: Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  42. Goda, I., Assidi, M., Belouettar, S., Ganghoffer, J.F.: A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. J. Mech. Behav. Biomed. Mater. 16, 87–108 (2012)

    Article  Google Scholar 

  43. Ganghoffer, J.F., Goda, I.: Prediction of Size Effects in Bone Brittle and Plastic Collapse, Multiscale Biomechanics, pp. 345–388 (2018)

  44. Ganghoffer, J.F., Goda, I.: Micropolar Models of Trabecular Bone, Multiscale Biomechanics, pp. 263–316 (2018)

  45. Goda, I., Rahouadj, R., Ganghoffer, J.F.: Size dependent static and dynamic behavior of trabecular bone based on micromechanical models of the trabecular architecture. Int. J. Eng. Sci. 72, 53–77 (2013)

    Article  MATH  Google Scholar 

  46. Goda, I., Ganghoffer, J.F., Czarnecki, S., Czubacki, R., Wawruch, P.: Topology optimization of bone using cubic material design and evolutionary methods based on internal remodeling. Mech. Res. Commun. 95, 52–60 (2019)

    Article  Google Scholar 

  47. Ganghoffer, J.F., Goda, I., Rahouadj, R.: Size-Dependent Dynamic Behavior of Trabecular Bone, Multiscale Biomechanics, pp. 317–344 (2018)

  48. Goda, I., Ganghoffer, J.F.: Modeling of anisotropic remodeling of trabecular bone coupled to fracture. Arch. Appl. Mech. 88(5), 2101–2121 (2018)

    Article  ADS  Google Scholar 

  49. Goda, I., Ganghoffer, J.F.: Identification of couple-stress moduli of vertebral trabecular bone based on the 3D internal architectures. J. Mech. Behav. Biomed. Mater. 51, 99–118 (2015)

    Article  Google Scholar 

  50. Goda, I., Assidi, M., Ganghoffer, J.F.: A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech. Model. Mechanobiol. 13(1), 53–83 (2014)

    Article  Google Scholar 

  51. ElNady, K., Goda, I., Ganghoffer, J.F.: Computation of the effective nonlinear mechanical response of lattice materials considering geometrical nonlinearities. Comput. Mech. 58(6), 957–979 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Geuzaine, C., Remacle, J.F.: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(4), 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. Taylor, R.: FEAP: Finite Element Analysis Program, University of California, Berkeley (2011)

  54. Tanwer, A.K.: Effect of various heat treatment processes on mechanical properties of mild steel and stainless steel. Am. Int. J. Res. Sci. Technol. Eng. Math. 8(1), 57–61 (2014)

    Google Scholar 

  55. Mead, D.J.: Wave propagation in continuous periodic structures: research contributions from Southampton, 1964–1995. J. Sound Vib. 190(3), 495–524 (1996)

    Article  ADS  Google Scholar 

  56. Langley, R.S., Bardell, N.S., Ruivo, H.M.: The response of two-dimensional periodic structures to harmonic point loading: a theoretical and experimental study of a beam grillage. J. Sound Vib. 207(4), 521–535 (1997)

    Article  ADS  Google Scholar 

  57. Phani, A.S., Woodhouse, J., Fleck, N.A.: Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119(4), 1995–2005 (2006)

    Article  ADS  Google Scholar 

  58. Gonella, S., Ruzzene, M.: Analysis of in-plane wave propagation in hexagonal and reentrant lattices. J. Sound Vib. 312(1–2), 125–139 (2008a)

    Article  ADS  MATH  Google Scholar 

  59. Gonella, S., Ruzzene, M.: Homogenization and equivalent in-plane properties of two-dimensional periodic lattices. Int. J. Solids Struct. 45(10), 2897–2915 (2008b)

    Article  MATH  Google Scholar 

  60. Bacigalupo, A., Gambarotta, L.: Homogenization of periodic hexa- and tetrachiral cellular solids. Compos. Struct. 116, 461–476 (2014)

    Article  Google Scholar 

  61. Reda, H., Rahali, Y., Ganghoffer, J.F., Lakiss, H.: Wave propagation in 3D viscoelastic auxetic and textile materials by homogenized continuum micropolar models. Compos. Struct. 141, 328–345 (2016a)

    Article  Google Scholar 

  62. Reda, H., Rahali, Y., Ganghoffer, J.F., Lakiss, H.: Analysis of dispersive waves in repetitive lattices based on homogenized second-gradient continuum models. Compos. Struct. 152, 712–728 (2016b)

    Article  Google Scholar 

  63. Brillouin, L.: Wave Propagation in Periodic Structures. Dover, New York (1946)

    MATH  Google Scholar 

  64. Chen, W., Fish, J.: A dispersive model for wave propagation in periodic heterogeneous media based on homogenization with multiple spatial and temporal scales. J. Appl. Mech. 68(1), 153–161 (2001)

    Article  ADS  MATH  Google Scholar 

  65. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289(5485), 1734–1736 (2000)

    Article  ADS  Google Scholar 

  66. Goffaux, C., Sánchez-Dehesa, J., Yeyati, A.L., Lambin, P., Khelif, A., Vasseur, J.O., Djafari-Rouhani, B.: Evidence of fano-like interference phenomena in locally resonant materials. Phys. Rev. Lett. 88(13), 225502 (2002)

    Article  ADS  Google Scholar 

  67. Wang, G., Wen, X., Wen, J., Shao, L., Liu, Y.: Observation of electron-antineutrino disappearance at Daya Bay. Phys. Rev. Lett. 154302 (2004)

  68. Guenneau, S., Movchan, A., Pétursson, G., Ramakrishna, S.A.: Acoustic metamaterials for sound focusing and confinement. New J. Phys. 9(4), 399 (2007)

    Article  ADS  Google Scholar 

  69. Pennec, Y., Djafari-Rouhani, B., Larabi, H., Vasseur, J.O., Hladky-Hennion, A.C.: Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate. Phys. Rev. B 78(10), 104105 (2008). (n.d.)

    Article  ADS  Google Scholar 

  70. Wu, T.T., Huang, Z.G., Lin, S.: Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy. Phys. Rev. B 69, 094301 (2004)

    Article  ADS  Google Scholar 

  71. Torrent, D., Sanchez-Dehesa, J.: Acoustic cloaking in two dimensions: a feasible approach. New J. Phys. 10(6), 063015 (2008)

    Article  ADS  Google Scholar 

  72. Merheb, B., Deymier, P.A., Muralidharan, K., Bucay, J., Jain, M., Aloshyna-Lesuffleur, M., Greger, R.W., Mohanty, S., Berker, A.: Viscoelastic effect on acoustic band gaps in polymer-fluid composites. Model. Simul. Mater. Sci. Eng. 17(7), 075013 (2009)

    Article  ADS  Google Scholar 

  73. Bacigalupo, A., De Bellis, M.L.: Auxetic anti-tetrachiral materials: equivalent elastic properties and frequency band-gaps. Compos. Struct. 131, 530–544 (2015)

    Article  Google Scholar 

  74. Pham, C.V., Ogden, R.W.: Formulas for the Rayleigh wave speed in orthotropic elastic solids. Arch. Mech. 56(3), 247–265 (2004)

    MathSciNet  MATH  Google Scholar 

  75. Wang, A.-J., McDowell, D.L.: Effects of defects on in-plane properties of periodic metal honeycombs. Int. J. Mech. Sci. 45(4), 1799–1813 (2003)

    Article  MATH  Google Scholar 

  76. Imberger, J.: Surface waves, In: Environmental Fluid Dynamics: Flow Processes, Scaling, Equations of Motion, and Solutions to Environmental Flows, Academic Press, New York, pp. 333–349 (2012)

  77. Melville, W.K.: Surface gravity and capillary waves. In: Encyclopedia of Ocean Sciences, 2nd edn, Elsevier, Amsterdam, pp. 573–581 (2001)

  78. Haldar, S.K.: Exploration geophysics. In: Mineral Exploration: Principles and Applications, Elsevier, Amsterdam, pp. 103–122 (2018)

  79. Al Wardany, R., Rhazi, J., Ballivy, G., Gallias, J.L., Saleh, K.: Use of Rayleigh wave methods to detect near surface concrete damage. In: 16th WCNDT (2004)

  80. Stokoe, K.H., Santamarina, J.C.: Seismic-Wave-based Testing in Geotechnical Engineering, vol. 2000, GeoEng, Melbourne, Australia, pp. 1490–1536 (2000)

  81. Dascalu, C.: Dynamic localization of damage and microstructural length influence. Int. J. Damage Mech. 26(3), 1–29 (2016)

    Google Scholar 

  82. Ganghoffer, J.F., Goda, I.: Multiscale Aspects of Bone Internal and External Remodeling, Multiscale Biomechanics, pp. 389–435 (2018)

  83. Ganghoffer, J.F., Goda, I.: A combined accretion and surface growth model in the framework of irreversible thermodynamics. Int. J. Eng. Sci. 127, 53–79 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  84. Goda, I., Ganghoffer, J.F., Maurice, G.: Combined bone internal and external remodeling based on Eshelby stress. Int. J. Solids Struct. 94, 138–157 (2016)

    Article  Google Scholar 

  85. Hazelwood, S.J., Martin, R.B., Rashid, M.M., Rodrigo, J.J.: A mechanistic model for internal bone remodeling exhibits different dynamic responses in disuse and overload. J. Biomech. 34, 299–308 (2001)

    Article  Google Scholar 

  86. Ganghoffer, J.F.: A contribution to the mechanics and thermodynamics of surface growth. Application to bone external remodeling. Int. J. Eng. Sci. 50, 166–191 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Ganghoffer.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Computation of the effective properties

In general, the computation of the effective moduli of a Y-shape unit cell (with the dimensions as in Fig. 24), which is in turn subjected to the homogeneous displacement-controlled tension \(({}^{{u}_{xx}}/ 2)\) along the X-direction, the homogeneous displacement-controlled tension \(\left( u_{yy} \right) \) in the Y-direction, and the homogeneous displacement-controlled shearing \(\left( u_{yx} \right) \) case shown in Fig. 9, is separately treated as follows:

Fig. 24
figure 24

Loading conditions for the computation of the effective moduli

  • In case the sample is loaded in tension by homogeneous displacements \(({}^{{u}_{xx}}/2)\), the effective modulus is computed as: \(E_{xx}=\frac{\sigma _{xx}}{\varepsilon _{xx}}\) with \(\sigma _{xx}=\frac{\left| R_{x,2} \right| }{h}\), and \(\varepsilon _{xx}=\frac{u_{xx}}{L}\)

    The corresponding Poisson’s ratio can be easily defined as: \(\upsilon _{xy}=-\frac{\frac{u_{y,\mathrm{node} \,{{\varvec{c}}}}}{H}}{\varepsilon _{xx}} =-\frac{u_{y,\mathrm{node}\,{{\varvec{c}}}}}{H\varepsilon _{xx}}\)

    where \(\sigma _{xx}\) is the stress, \(\varepsilon _{xx}\) refers to the strain, \(R_{x,2}\) denotes the total reaction force at nodes on the right edge of the unit cell where displacements \({}^{u_{xx}}/ 2\) are imposed, and \(u_{y,\mathrm{node}\,{{\varvec{c}}}}\) stands for the measured displacement in the Y-direction at node c.

  • Similarly, when homogeneous displacements \(\left( u_{yy} \right) \) are applied to the specimen the value of the effective modulus is \(E_{yy}=\frac{\sigma _{yy}}{\varepsilon _{yy}}\) with \(\sigma _{yy}=\frac{\left| R_{y} \right| }{2l}\) and \(\varepsilon _{yy}=\frac{u_{yy}}{H}\).

    Meanwhile, \(\upsilon {}_{yx}=-\frac{\frac{u_{x,\mathrm{node}\,{{\varvec{a}}}}-u_{x,\mathrm{node}\,{{\varvec{b}}}}}{L}}{\varepsilon _{yy}}=-\frac{u_{x,\mathrm{node}\,{{\varvec{a}}}}-u_{x,\mathrm{node}\,{{\varvec{b}}}}}{L\varepsilon _{yy}}\) is the expression of the Poisson’s ratio in this case, wherein \(\sigma _{yy}\) is the stress, \(\varepsilon _{yy}\) is the strain, \(R_{y}\) is referred to the sum of reaction forces in the Y-direction at the support points, and \(u_{x,\mathrm{node}\,{{\varvec{a}}}},u_{x,\mathrm{node}\,{{\varvec{b}}}}\) represent the measured displacement in the X-direction at node a and b, respectively.

  • In the last case in which the imposed loads are the homogeneous displacement-controlled shearing \(\left( u_{yx} \right) \), the effective shear modulus can be written as: \(G_{yx}=\frac{\tau _{yx}}{\varepsilon _{yx}}\) with \(\tau _{yx}=\frac{\left| R_{x,1} \right| }{2l}\), \(\varepsilon _{yx}=\frac{u_{yx}}{H}\), wherein \(\tau _{yx}\) is the shear stress, \(\varepsilon _{yx}\) is the shear strain, and \(R_{x,1}\) is the sum of reaction forces in the X-direction at the support points.

Finally, we obtain the full rigidity matrix as follows:

$$\begin{aligned} \left[ {\begin{array}{*{20}c} \varepsilon _{xx}\\ \varepsilon _{yy}\\ 2\varepsilon _{xy}\\ \end{array} } \right] =\left[ {\begin{array}{*{20}c} \frac{1}{E_{xx}} &{} -\frac{\nu _{yx}}{E_{yy}} &{} \frac{\eta _{xy}}{G_{xy}}\\ -\frac{\nu _{xy}}{E_{xx}} &{} \frac{1}{E_{yy}} &{} \frac{\mu _{xy}}{G_{xy}}\\ \frac{\eta _{xy}}{G_{xy}} &{} \frac{\mu _{xy}}{G_{xy}} &{} \frac{1}{G_{xy}}\\ \end{array} } \right] \left[ {\begin{array}{*{20}c} \sigma _{xx}\\ \sigma _{yy}\\ \tau _{xy}\\ \end{array} } \right] . \end{aligned}$$
(72)

Appendix 2: Implementation of periodicity conditions

The finite element model is capable of simulating elementary cells under combined loading conditions. Based upon the relation between the strain energy of the microstructure and that of the homogenized equivalent model under specific periodic boundary conditions, a strain energy-based method is developed. This method is then used to compute the effective elastic properties. The heterogeneity within the unit cell of the repetitive architectured material is taken into account through the homogenized material properties.

At the meso-level, the finite element modeling procedure accounts for a single unit cell instead of the entire structure. By imposing a specific type of geometric constraints known as “periodic boundary conditions” on the unit cells, the boundary effects from the adjacent cells are taken into account. It is noteworthy that the boundary surfaces of the unit cell always appear in parallel pairs. The periodicity vectors along with the periodic boundary conditions are shown in Fig. 25.

Fig. 25
figure 25

Periodicity vectors \(\hbox {Y}_{1}\), \(\hbox {Y}_{2}\) and related nodes for the implementation of periodicity conditions

On a pair of parallel opposite boundary surfaces, the displacements can be written as

$$\begin{aligned} u_{i}^{k^+}={\tilde{\varepsilon }}_{ij}x_{j}^{k^+}+u_{i}^{*}, u_{i}^{k^-}={\tilde{\varepsilon }}_{ij}x_{j}^{k^-}+u_{i}^{*} \end{aligned}$$
(73)

in which the kth pair of two parallel opposite boundary surfaces of a repeated unit cell is identified by indices “\(k^+\)” and “\(k^-\)”. It is important to note that at the two parallel boundaries (periodicity) \(u_{i}^{*}\) is exactly the same; thus, the difference between \(u_{i}^{{k}^+}\) and \(u_{i}^{{k}^-}\) in the above two equations yields

$$\begin{aligned} u_{i}^{k^+}-u_{i}^{k^-}={\tilde{\varepsilon }}_{ij}(x_{j}^{k^+} -x_{j}^{k^-}){\tilde{\varepsilon }}_{ij}\Delta x_{j}^{k} \end{aligned}$$
(74)

with \({\tilde{\varepsilon }}_{ij}\) being the macroscopic (average) strains of the unit cell. For a specified macro-strain \({\tilde{\varepsilon }}_{ij}\), the right-hand side of (74) becomes constant owing to constant quantities \(\Delta x_{j}^{k}\) for each pair of the parallel boundary surfaces. Instead of giving Eq. (73) directly as boundary conditions, the constraint equations are imposed as nodal displacement constraint ones.

In order to estimate effective elastic properties with specific boundary conditions imposed on the microstructure, a strain energy-based method is exploited. The total strain energy stored in the unit cell is equal to the energy of an equivalent homogeneous continuum achieved through the prescribed strain/stress fields. In the elastic phase, the macroscopic behaviors of a unit cell can be represented by the effective strain tensor \(E_{ij}\) and stress tensor \(\sum _{ij}\) over the homogeneous equivalent model. The relation between \(\sum _{ij}\) and \(E_{ij}\) can then be written as:

$$\begin{aligned} \sum \nolimits _{ij}=K^\mathrm{hom}E_{ij} \end{aligned}$$
(75)

where \(K^\mathrm{hom}\) is the effective (homogenized) stiffness matrix, \(\sum _{ij}=\frac{1}{V_{u}}\int _{V_{u}} \sigma _{ij}\hbox {d}V_{u}\) and \(E_{ij}=\frac{1}{V_{u}}\int _{V_{u}} {\varepsilon _{ij}\hbox {d}V_{u}}\) stand for the volume averaging of the microscopic stress and strain tensors, \(\sigma _{ij}\) and \(\varepsilon _{ij}\), respectively, and \(V_{u}\) refers to the volume of the unit cell.

In a 2D state, Eq. (75) can then be rewritten as follows:

$$\begin{aligned} \left[ {\begin{array}{*{20}c} {\sum }_{xx}\\ {\sum }_{yy}\\ {\sum }_{xy}\\ \end{array} } \right] =\left[ {\begin{array}{*{20}c} K_{11}^\mathrm{hom} &{} K_{12}^\mathrm{hom} &{} K_{16}^\mathrm{hom}\\ K_{12}^\mathrm{hom} &{} K_{22}^\mathrm{hom} &{} K_{26}^\mathrm{hom}\\ K_{16}^\mathrm{hom} &{} K_{26}^\mathrm{hom} &{} K_{66}^\mathrm{hom}\\ \end{array} } \right] \left[ {\begin{array}{*{20}c} E_{xx}\\ E_{yy}\\ E_{xy}\\ \end{array} } \right] . \end{aligned}$$
(76)

The strain energy density over the unit cell \(U_\mathrm{cell}\) can be obtained from the following expression:

$$\begin{aligned} U_\mathrm{cell}=\frac{1}{2}\left[ {\begin{array}{*{20}c} \sum \nolimits _{xx} &{} \sum \nolimits _{yy} &{} 2\sum \nolimits _{xy}\\ \end{array} } \right] \left[ {\begin{array}{*{20}c} E_{xx}\\ E_{yy}\\ E_{xy}\\ \end{array} } \right] =\frac{1}{2}\left( \sum \nolimits _{xx}E_{xx}+\sum \nolimits _{yy}E_{yy} +2\sum \nolimits _{xy}E_{xy}\right) . \end{aligned}$$
(77)

The components of the stiffness tensor for the unit cell can then be computed through the periodic boundary conditions imposed over a unit cell of domain \(\Omega \) with boundary \(\partial \Omega \). From there, the following six elementary tests are considered:

Load case 1: Prescribed unit strain state in the x-direction, \(E_{xx}=1,{E_{yy}=E}_{xy}=0\).

The corresponding displacement boundary conditions: \(u=x, v=0\), on \(\partial \Omega \), yielding:

$$\begin{aligned} K_{11}^\mathrm{hom}={2U_\mathrm{cell}} / V_{u}. \end{aligned}$$
(78)

Load case 2: Prescribed unit strain state in the y-direction, \(E_{xx}=E_{xy}=0,{E}_{yy}=1\).

The corresponding kinematic boundary conditions: \(u=0, v=y\), on \(\partial \Omega \), leading to:

$$\begin{aligned} K_{22}^\mathrm{hom}={2U_\mathrm{cell}} / V_{u}. \end{aligned}$$
(79)

Load case 3: Prescribed biaxial strain state, \(E_{xx}=E_{yy}=1,{E}_{xy}=0\).

The corresponding boundary conditions: \(u=x, v=y\), on \(\partial \Omega \), resulting in:

$$\begin{aligned} K_{12}^\mathrm{hom}=\left( {2U_\mathrm{cell}} / V_{u}-K_{11}^\mathrm{hom}-K_{22}^\mathrm{hom} \right) / 2. \end{aligned}$$
(80)

Load case 4: Prescribed shear strain state, \(E_{xx}=E_{yy}=0,{E}_{xy}=1\).

The corresponding kinematic boundary conditions: \(u=y/2, v=x/2\), on \(\partial \Omega \), from which we obtain:

$$\begin{aligned} K_{66}^\mathrm{hom}={2U_\mathrm{cell}} / V_{u}. \end{aligned}$$
(81)

Load case 5: Prescribed coupling strain state, \(E_{xx}=E_{xy}=1,{E}_{yy}=0\).

The kinematic boundary conditions in this case: \(u=x+y/2, v=x/2\), on \(\partial \Omega \), from which we get:

$$\begin{aligned}&\left[ {\begin{array}{*{20}l} {\sum }_{xx}\\ {\sum }_{yy}\\ {\sum }_{xy}\\ \end{array} } \right] =\left[ {\begin{array}{*{20}c} K_{11}^\mathrm{hom} &{} K_{12}^\mathrm{hom} &{} K_{16}^\mathrm{hom}\\ K_{12}^\mathrm{hom} &{} K_{22}^\mathrm{hom} &{} K_{26}^\mathrm{hom}\\ K_{16}^\mathrm{hom} &{} K_{26}^\mathrm{hom} &{} K_{66}^\mathrm{hom}\\ \end{array} } \right] \left[ {\begin{array}{*{20}l} 1\\ 0\\ 1\\ \end{array} } \right] =\left[ {\begin{array}{*{20}l} K_{11}^\mathrm{hom}+K_{16}^\mathrm{hom}\\ K_{12}^\mathrm{hom}+K_{26}^\mathrm{hom}\\ K_{16}^\mathrm{hom}+K_{66}^\mathrm{hom}\\ \end{array} } \right] \nonumber \\&\quad \Longrightarrow K_{16}^\mathrm{hom}=\left( {2U_\mathrm{cell}} / V_{u}-K_{11}^\mathrm{hom}-2K_{66}^\mathrm{hom} \right) . \end{aligned}$$
(82)

Load case 6: Prescribed coupling strain state, \(E_{xx}=0,{E}_{yy}=E_{xy}=1\).

The boundary conditions in this situation: write \(u=y/2, v=x/2+y\), on \(\partial \Omega \), allowing to achieve:

$$\begin{aligned}&.\left[ {\begin{array}{*{20}l} {\sum }_{xx}\\ {\sum }_{yy}\\ {\sum }_{xy}\\ \end{array} } \right] =\left[ {\begin{array}{*{20}c} K_{11}^\mathrm{hom} &{} K_{12}^\mathrm{hom} &{} K_{16}^\mathrm{hom}\\ K_{12}^\mathrm{hom} &{} K_{22}^\mathrm{hom} &{} K_{26}^\mathrm{hom}\\ K_{16}^\mathrm{hom} &{} K_{26}^\mathrm{hom} &{} K_{66}^\mathrm{hom}\\ \end{array} } \right] \left[ {\begin{array}{*{20}c} 0\\ 1\\ 1\\ \end{array} } \right] =\left[ {\begin{array}{*{20}c} K_{12}^\mathrm{hom}+K_{16}^\mathrm{hom}\\ K_{22}^\mathrm{hom}+K_{26}^\mathrm{hom}\\ K_{26}^\mathrm{hom}+K_{66}^\mathrm{hom}\\ \end{array} } \right] \nonumber \\&\quad \Longrightarrow 2K_{26}^\mathrm{hom}=\left( {2U_\mathrm{cell}} / V_{u}-K_{22}^\mathrm{hom}-3K_{66}^\mathrm{hom} \right) . \end{aligned}$$
(83)

The components of the effective stiffness matrix, quantities \(K_{11}^\mathrm{hom},K_{22}^\mathrm{hom},K_{12}^\mathrm{hom},K_{66}^\mathrm{hom},K_{16}^\mathrm{hom},K_{26}^\mathrm{hom}\), as well as the equivalent moduli, coupling coefficients in the constitutive law, Eq. (72) and Poisson’s ratio are computed from the above numerical analyses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, X.N., Reda, H. & Ganghoffer, J.F. Impact of damage on the effective properties of network materials and on bulk and surface wave propagation characteristics. Continuum Mech. Thermodyn. 33, 369–401 (2021). https://doi.org/10.1007/s00161-020-00908-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00908-x

Keywords

Navigation