Skip to main content
Log in

The evaporation–condensation problem for a binary mixture of rarefied gases

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Half space problems of evaporation and condensation for a binary mixture of inert gases are investigated when the dynamics is governed by a system of Navier–Stokes equations, obtained as hydrodynamic limit of a BGK-type description with dominant elastic collisions. Typical methods of qualitative theory of dynamical systems are used to investigate the one-dimensional stationary problem and to classify the solutions both in subsonic and supersonic cases. Numerical results for a mixture of noble gases are presented; the shock wave structure, representing transition between a subsonic and a supersonic steady flow in thermodynamic equilibrium, and the occurrence of under- and overshoots are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andries, P., Aoki, K., Perthame, B.: A consistent BGK-type model for gas mixtures. J. Stat. Phys. 106(5–6), 993–1018 (2002)

    Article  MathSciNet  Google Scholar 

  2. Aoki, K., Bardos, C., Takata, G.: Knudsen layer for gas mixtures. J. Stat. Phys. 112(3–4), 629–655 (2003)

    Article  MathSciNet  Google Scholar 

  3. Aoki, K., Takata, S., Taguchi, S.: Vapor flows with evaporation and condensation in the continuum limit: effect of a trace of noncondensable gas. Eur. J. Mech. B Fluids 22(1), 51–71 (2003)

    Article  Google Scholar 

  4. Artale, V., Conforto, F., Martalò, G., Ricciardello, A.: Shock structure and multiple sub-shocks in Grad 10-moment binary mixtures of monoatomic gases. Ric. Mat. (2018). https://doi.org/10.1007/s11587-018-0421-9

    Article  MATH  Google Scholar 

  5. Bisi, M., Bobylev, A., Groppi, M., Spiga, G.: Hydrodynamic Equations from a BGK Model for Inert Gas Mixtures, in AIP Conf. Proc. RGD (2018) (in press)

  6. Bisi, M., Conforto, F., Martalò, G.: Sub-shock formation in Grad 10-moment equations for a binary gas mixture. Continuum Mech. Therm. 28(5), 1295–1324 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bisi, M., Lorenzani, S.: High-frequency sound wave propagation in binary gas mixtures flowing through microchannels. Phys. Fluids 28(5), 052003 (2016)

    Article  ADS  Google Scholar 

  8. Bisi, M., Martalò, G., Spiga, G.: Multi-temperature fluid-dynamic model equations from kinetic theory in a reactive gas: the steady shock problem. Comput. Math. Appl. 66(8), 1403–1417 (2013)

    Article  MathSciNet  Google Scholar 

  9. Bisi, M., Martalò, G., Spiga, G.: Shock wave structure of multi-temperature Euler equations from kinetic theory for a binary mixture. Acta Appl. Math. 132(1), 95–105 (2014)

    Article  MathSciNet  Google Scholar 

  10. Bobylev, A.V., Bisi, M., Groppi, M., Spiga, G., Potapenko, I.F.: A general consistent BGK model for gas mixtures. Kinet. Relat. Mod. 11(6), 1377–1393 (2018)

    Article  MathSciNet  Google Scholar 

  11. Bobylev, A.V., Ostmo, S., Ytrehus, T.: Qualitative analysis of the Navier-Stokes equations for evaporation-condensation problems. Phys. Fluids 8(7), 1764–1773 (1996)

    Article  ADS  Google Scholar 

  12. Boillat, G., Ruggeri, T.: On the shock structure problem for hyperbolic system of balance laws and convex entropy. Continuum Mech. Therm. 10(5), 285–292 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  13. Cercignani, C.: Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  14. Chapman, S., Cowling, T.G., Burnett, D.: The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  15. Currò, C., Fusco, D.: Discontinuous travelling wave solutions for a class of dissipative hyperbolic models. Rend. Lincei-Mat. Appl. 16(1), 61–71 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Conforto, F., Mentrelli, A., Ruggeri, T.: Shock structure and multiple sub-shocks in binary mixtures of Eulerian fluids. Ric. Mat. 66(1), 221–231 (2017)

    Article  MathSciNet  Google Scholar 

  17. Kestin, J., Knierim, K., Mason, E.A., Najafi, B., Ro, S.T., Waldman, M.: Equilibrium and transport properties of the noble gases and their mixtures at low density. J. Phys. Chem. Ref. Data 13(1), 229–303 (1984)

    Article  ADS  Google Scholar 

  18. Madjarevic, D., Ruggeri, T., Simic, S.: Shock structure and temperature overshoot in macroscopic multi-temperature model of mixtures. Phys. Fluids 26(10), 106102 (2014)

    Article  ADS  Google Scholar 

  19. McCormack, F.J.: Construction of linearized kinetic models for gaseous mixtures and molecular gases. Phys. Fluids 16(12), 2095–2105 (1973)

    Article  ADS  Google Scholar 

  20. Mott-Smith, H.M.: The solution of the Boltzmann equation for a shock wave. Phys. Rev. 82(6), 885–892 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  21. Pao, Y.P.: Temperature and density jumps in the kinetic theory of gases and vapors. Phys. Fluids 14, 1340–1346 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  22. Scherer, C.S.: An analytical approach to the strong evaporation problem in rarefied gas dynamics. Z. Angew. Math. Phys. 66, 1821–1833 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Siewert, C.E.: Heat transfer and evaporation/condensation problems based on the linearized Boltzmann equation. Eur. J. Mech. B Fluids 22, 391–408 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  24. Sone, Y.: Kinetic theoretical studies of the half-space problem of evaporation and condensation. Transp. Theory Stat. Phys. 29, 227–260 (2000)

    Article  ADS  Google Scholar 

  25. Sone, Y.: Kinetic Theory and Fluid Dynamics. Springer, Berlin (2012)

    MATH  Google Scholar 

  26. Takata, S.: Half-space problem of weak evaporation and condensation of a binary mixture of vapors. AIP Conf. Proc. 762(1), 503–508 (2005)

    Article  ADS  Google Scholar 

  27. Takata, S., Golse, F.: Half-space problem of the nonlinear Boltzmann equation for weak evaporation and condensation of a binary mixture of vapors. Eur. J. Mech. B Fluids 26(1), 105–131 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  28. Taniguchi, S., Arima, T., Ruggeri, R., Sugiyama, M.: Overshoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure. Int. J. Nonlinear Mech. 79, 66–75 (2016)

    Article  ADS  Google Scholar 

  29. Taniguchi, S., Ruggeri, T.: On the sub-shock formation in extended thermodynamics. Int. J. Nonlinear Mech. 99, 69–78 (2018)

    Article  ADS  Google Scholar 

  30. Yasuda, S., Takata, S., Aoki, K.: Evaporation and condensation of a binary mixture of vapors. Proc. Appl. Math. Mech. 6, 555–556 (2006)

    Article  Google Scholar 

  31. Ytrehus, T.: Theory and experiments on gas kinetics in evaporation. In: Proceedings of 10th International Symposium on Rarefied Gas Dynamics, Aspen, USA, pp. 1197–1212 (1976)

  32. Zhakhovsky, V.V., Kryukov, A.P., Levashov, V.Yu., Shishkova, I.N., Anisimov, S.I.: Mass and heat transfer between evaporation and condensation surfaces: atomistic simulation and solution of Boltzmann kinetic equation. In: PNAS - Proceedings of the National Academy of Sciences of the USA, W.A. Goddard III Ed., Pasadena, CA (USA), 201714503, pp. 1–9 (2018)

  33. Zudin, Y.B.: Linear kinetic analysis of evaporation and condensation. Thermophys. Aeromech. 23, 421–433 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was performed in the frame of activities sponsored by the Italian National Group of Mathematical Physics (GNFM-INdAM) and by the University of Parma (Italy), and supported by the Italian National Research Project Multiscale phenomena in Continuum Mechanics: singular limits, off-equilibrium and transitions (Prin 2017YBKNCE) and by the French-Italian program Galileo, G18-296 Modelli cinetici classici e quantistici e loro limiti idrodinamici: aspetti teorici e applicativi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Martalò.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisi, M., Groppi, M. & Martalò, G. The evaporation–condensation problem for a binary mixture of rarefied gases. Continuum Mech. Thermodyn. 32, 1109–1126 (2020). https://doi.org/10.1007/s00161-019-00814-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00814-x

Keywords

Navigation