Skip to main content
Log in

Sub-shock formation in Grad 10-moment equations for a binary gas mixture

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The shock structure problem for Grad 10-moment equations for an inert binary mixture is investigated: necessary conditions for the formation of sub-shocks in fields of only one gas or of both components are rigorously obtained, and a detailed comparison with the shock-wave structure of its principal sub-system (deduced assuming vanishing viscous stress tensors) and of the equilibrium Euler sub-system is performed. Some numerical simulations for a mixture of argon and helium are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lax, P.D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves. In: CBMS-NSF Regional Conference Series in Applied Mathematics, New York (1987)

  2. LeFlock P.G.: Hyperbolic Systems of Conservation Laws—The Theory of Classical and Nonclassical Shock Waves. Birkhäuser, Zurich (2002)

    Google Scholar 

  3. Ruggeri T.: Breakdown of shock-wave-structure solutions. Phys. Rev. E 47(6), 4135–4140 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  4. Ruggeri T.: Non existence of shock structure solutions for hyperbolic dissipative systems including characteristic shocks. Appl. Anal. 57, 23–33 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Weiss W.: Continuous shock structure in extended thermodynamics. Phys. Rev. E 52(6), R5760–R5763 (1995)

    Article  ADS  Google Scholar 

  6. Boillat G., Ruggeri T.: Moment equations in the kinetic theory and wave velocities. Contin. Mech. Thermodyn. 9, 205–212 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Boillat G., Ruggeri T.: Hyperbolic principal subsystem: entropy convexity and subcharacteristic conditions. Arch. Ration. Mech. Anal. 137, 305–320 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boillat G., Ruggeri T.: On the shock structure problem for hyperbolic system of balance laws and convex entropy. Contin. Mech. Thermodyn. 10(5), 285–292 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Cercignani C., Frezzotti A., Grosfils P.: The structure of an infinitely strong shock wave. Phys. Fluids 11, 2757–2764 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bernhoff N., Bobylev A.: Weak shock waves for the general discrete velocity model of the Boltzmann equation. Commun. Math. Sci. 5, 815–832 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tcheremissine, F.G., Kolobov, V.I., Arslanbekov, R.R.: Simulation of shock wave structure in nitrogen with realistic rotational spectrum and molecular interaction potential. In: Ivanov, M.S., Rebrov, A.K. (eds.) Proceedings of 25th Rarefied Gas Dynamics Symposium, Novosibirsk (2007)

  12. Muller I., Ruggeri T.: Rational Extended Thermodynamics. Springer, New York (1988)

    MATH  Google Scholar 

  13. Kosuge S., Aoki K., Takata S.: Shock wave structure of a binary gas mixture: finite-difference analysis of the Boltzmann equation for hard-sphere molecules. Eur. J. Mech. B-Fluids 20, 87–126 (2001)

    Article  MATH  Google Scholar 

  14. Raines A.: Study of a shock wave structure in gas mixtures on the basis of the Boltzmann equation. Eur. J. Phys. B 21, 599–610 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Groppi, M., Rjasanow, S., Spiga, G.: A kinetic relaxation approach to fast reactive mixtures: shock wave structure. J. Stat. Mech. Theory Exp. P10010 (2009)

  16. Ruggeri, T., Simić, S.: Non linear wave propagation in binary mixtures of Euler fluids. In: Monaco, R., Pennisi, S., Rionero, S., Ruggeri, T. (eds.) Proceedings XII International Conference on Waves and Stability in Continuous Media, pp. 455–462, World Scientific, Singapore, (2004)

  17. Ruggeri T., Simić S.: Average temperature and Maxwellian iteration in multi-temperature mixtures of fluids. Phys. Rev. E 80, 026317 (2009)

    Article  ADS  Google Scholar 

  18. Madjarevic D., Simić S.: Shock structure in helium–argon mixture—a comparison of hyperbolic multi-temperature model with experiment. Europhys. Lett. 102, 44002 (2013)

    Article  ADS  Google Scholar 

  19. Madjarević D., Ruggeri T., Simić S.: Shock structure and temperature overshoot in macroscopic multi-temperature model of mixtures. Phys. Fluids 26, 106102 (2014)

    Article  ADS  Google Scholar 

  20. Bisi M., Martalò G., Spiga G.: Shock wave structure of multi-temperature Euler equations from kinetic theory for a binary mixture. Acta Appl. Math. 132, 95–105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Conforto, F., Mentrelli, A., Ruggeri, T.: Shock structure and multiple sub-shocks in hyperbolic systems of balance laws: the case of a multi-temperature mixture of Eulerian fluids, preprint (2015)

  22. Bisi M., Martalò G., Spiga G.: Multi-temperature fluid-dynamic model equations from kinetic theory in a reactive gas: the steady shock problem. Comput. Math. Appl. 66, 1403–1417 (2013)

    Article  MathSciNet  Google Scholar 

  23. Currò C., Fusco D.: Discontinuous travelling wave solutions for a class of dissipative hyperbolic models. Rend. Mat. Acc. Lincei s. 9 16(1), 61–71 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Conforto F., Monaco R., Ricciardello A.: Discontinuous shock structure in a reacting mixture modelled by Grad 13 moment approximation. Acta Appl. Math. 132, 225–236 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bisi M., Groppi M., Spiga G.: Grad’s distribution functions in the kinetic equations for a chemical reaction. Contin. Mech. Thermodyn. 14, 207–222 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Bisi, M., Groppi, M., Spiga, G.: Kinetic approach to chemically reacting gas mixtures. In: Pareschi, L., Russo, G., Toscani, G. (eds) Modelling and Numerics of Kinetic Dissipative Systems, pp. 107–126. Nova Science, New York (2005)

  27. Schaerer R.P., Torrilhon M.: On singular closures for the 5-moment system in kinetic gas theory. Commun. Comput. Phys. 17, 371–400 (2015)

    Article  MathSciNet  Google Scholar 

  28. Grad H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jenkins J.T., Richman M.W.: Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Ration. Mech. Anal. 87, 355–377 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fernandes A.S., Reinecke S., Kremer G.M.: A combined Chapman–Enskog and Grad method. III. Polyatomic gases in magnetic fields. Contin. Mech. Thermodyn. 9, 309–322 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Gombosi T.I.: Gaskinetic Theory. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  32. Chapman S., Cowling T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  33. Timokhin M.Yu., Bondar A., Kokhanchik A. Ye.A., Ivanov M.S., Ivanov I.E., Kryukov I.A.: Study of the shock wave structure by regularized Grad’s set of equations. Phys. Fluids 27, 037101 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzia Bisi.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisi, M., Conforto, F. & Martalò, G. Sub-shock formation in Grad 10-moment equations for a binary gas mixture. Continuum Mech. Thermodyn. 28, 1295–1324 (2016). https://doi.org/10.1007/s00161-015-0476-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0476-8

Keywords

Navigation