Advertisement

Robust four-node elements based on Hu–Washizu principle for nonlinear analysis of Cosserat shells

  • Karol DaszkiewiczEmail author
  • Wojciech Witkowski
  • Stanisław Burzyński
  • Jacek Chróścielewski
Open Access
Original Article
  • 65 Downloads

Abstract

Mixed 4-node shell elements with the drilling rotation and Cosserat-type strain measures based on the three-field Hu–Washizu principle are proposed. In the formulation, apart from displacement and rotation fields, both strain and stress resultant fields are treated as independent. The elements are derived in the framework of a general nonlinear 6-parameter shell theory dedicated to the analysis of multifold irregular shells. The novelty of the developed elements stems from the fact that the measures of assumed strains and stress resultants are asymmetric. The original interpolation of drilling and bending components of strains and stress resultants is proposed. In the formulation of new mixed elements, two variants of the interpolation of membrane components are used and interpolation of the independent fields is defined in the natural or skew coordinates. Accuracy and efficiency of the developed elements are tested in several linear and nonlinear numerical examples. It is shown that smaller number of independent parameters in the interpolation of membrane components gives more accurate results. The proposed mixed 4-node elements enable the use of large load steps in nonlinear computations. Moreover, they require significantly less equilibrium iterations than other shell elements formulated in the 6-parameter shell theory.

Keywords

Shell Finite element Mixed element Cosserat Asymmetric strains Drilling rotation 

Notes

Acknowledgements

The research reported in this paper was supported by the National Science Centre, Poland, with the Grant UMO-2015/17/B/ST8/02190.

References

  1. 1.
    Belytschko, T., Tsay, C.-S.: A stabilization procedure for the quadrilateral plate element with one-point quadrature. Int. J. Numer. Methods Eng. 19, 405–419 (1983).  https://doi.org/10.1002/nme.1620190308 CrossRefzbMATHGoogle Scholar
  2. 2.
    Belytschko, T., Leviathan, I.: Physical stabilization of the 4-node shell element with one point quadrature. Comput. Methods Appl. Mech. Eng. 113, 321–350 (1994).  https://doi.org/10.1016/0045-7825(94)90052-3 ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Reese, S.: A large deformation solid-shell concept based on reduced integration with hourglass stabilization. Int. J. Numer. Methods Eng. 69, 1671–1716 (2007).  https://doi.org/10.1002/nme.1827 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Pian, T.H.H.: State-of-the-art development of hybrid/mixed finite element method. Finite Elem. Anal. Des. 21, 5–20 (1995).  https://doi.org/10.1016/0168-874X(95)00024-2 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Pian, T.H.H.: Derivation of element stiffness matrices by assumed stress distributions. AIAA J. 2, 1333–1336 (1964).  https://doi.org/10.2514/3.2546 ADSCrossRefGoogle Scholar
  6. 6.
    Spilker, R.L.: Hybrid-stress eight-node elements for thin and thick multilayer laminated plates. Int. J. Numer. Methods Eng. 18, 801–828 (1982).  https://doi.org/10.1002/nme.1620180602 CrossRefzbMATHGoogle Scholar
  7. 7.
    Pian, T.H.H., Sumihara, K.: Rational approach for assumed stress finite elements. Int. J. Numer. Methods Eng. 20, 1685–1695 (1984).  https://doi.org/10.1002/nme.1620200911 CrossRefzbMATHGoogle Scholar
  8. 8.
    Dvorkin, E.N., Bathe, K.-J.: A continuum mechanics based four-node shell element for general non-linear analysis. Eng. Comput. 1, 77–88 (1984).  https://doi.org/10.1108/eb023562 CrossRefGoogle Scholar
  9. 9.
    Simo, J.C., Fox, D.D.: On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. Comput. Methods Appl. Mech. Eng. 72, 267–304 (1989).  https://doi.org/10.1016/0045-7825(89)90002-9 ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Simo, J.C., Fox, D.D., Rifai, M.S.: On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects. Comput. Methods Appl. Mech. Eng. 73, 53–92 (1989).  https://doi.org/10.1016/0045-7825(89)90098-4 ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Lee, S.W., Pian, T.H.H.: Improvement of plate and shell finite elements by mixed formulations. AIAA J. 16, 29–34 (1978).  https://doi.org/10.2514/3.60853 ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Lee, S.W., Rhiu, J.J.: A new efficient approach to the formulation of mixed finite element models for structural analysis. Int. J. Numer. Methods Eng. 23, 1629–1641 (1986).  https://doi.org/10.1002/nme.1620230905 CrossRefzbMATHGoogle Scholar
  13. 13.
    Simo, J.C., Rifai, M.S.: A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 29, 1595–1638 (1990).  https://doi.org/10.1002/nme.1620290802 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Simo, J.C., Armero, F.: Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 33, 1413–1449 (1992).  https://doi.org/10.1002/nme.1620330705 CrossRefzbMATHGoogle Scholar
  15. 15.
    Brank, B.: Assessment of 4-node EAS-ANS shell elements for large deformation analysis. Comput. Mech. 42, 39–51 (2008).  https://doi.org/10.1007/s00466-007-0233-3 ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Wagner, W., Gruttmann, F.: A robust non-linear mixed hybrid quadrilateral shell element. Int. J. Numer. Methods Eng. 64, 635–666 (2005).  https://doi.org/10.1002/nme.1387 CrossRefzbMATHGoogle Scholar
  17. 17.
    Gruttmann, F., Wagner, W.: Structural analysis of composite laminates using a mixed hybrid shell element. Comput. Mech. 37, 479–497 (2006).  https://doi.org/10.1007/s00466-005-0730-1 CrossRefzbMATHGoogle Scholar
  18. 18.
    Wisniewski, K., Turska, E.: Four-node mixed Hu–Washizu shell element with drilling rotation. Int. J. Numer. Methods Eng. 90, 506–536 (2012).  https://doi.org/10.1002/nme.3335 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Shang, Y., Cen, S., Li, C.-F.: A 4-node quadrilateral flat shell element formulated by the shape-free HDF plate and HSF membrane elements. Eng. Comput. 33, 713–741 (2016).  https://doi.org/10.1108/EC-04-2015-0102 CrossRefGoogle Scholar
  20. 20.
    Winkler, R., Plakomytis, D.: A new shell finite element with drilling degrees of freedom and its relation to existing formulations. In: Papadrakakis, M., Papadopoulos, V., Stefanou, G., and Plevris, V. (eds.) ECCOMAS Congress 2016–Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering. pp. 1–40., Crete Island, Greece (2016)Google Scholar
  21. 21.
    Li, Z.X., Zhuo, X., Vu-Quoc, L., Izzuddin, B.A., Wei, H.Y.: A four-node corotational quadrilateral elastoplastic shell element using vectorial rotational variables. Int. J. Numer. Methods Eng. 95, 181–211 (2013).  https://doi.org/10.1002/nme.4471 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Li, Z.X., Li, T.Z., Vu-Quoc, L., Izzuddin, B.A., Zhuo, X., Fang, Q.: A 9-node co-rotational curved quadrilateral shell element for smooth, folded and multi-shell structures. Int. J. Numer. Methods Eng. (2018).  https://doi.org/10.1002/nme.5936
  23. 23.
    Tang, Y.Q., Zhou, Z.H., Chan, S.L.: A simplified co-rotational method for quadrilateral shell elements in geometrically nonlinear analysis. Int. J. Numer. Methods Eng. 112, 1519–1538 (2017).  https://doi.org/10.1002/nme.5567 MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ko, Y., Lee, P.S., Bathe, K.J.: A new MITC4+ shell element. Comput. Struct. 182, 404–418 (2017).  https://doi.org/10.1016/j.compstruc.2016.11.004 CrossRefGoogle Scholar
  25. 25.
    Kulikov, G.M., Carrera, E., Plotnikova, S.V.: Hybrid-mixed quadrilateral element for laminated plates composed of functionally graded materials. Adv. Mater. Technol. 44–55, (2017).  https://doi.org/10.17277/amt.2017.01.pp.044-055
  26. 26.
    Boutagouga, D.: A new enhanced assumed strain quadrilateral membrane element with drilling degree of freedom and modified shape functions. Int. J. Numer. Methods Eng. 110, 573–600 (2017).  https://doi.org/10.1002/nme.5430 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kulikov, G.M., Plotnikova, S.V., Carrera, E.: A robust, four-node, quadrilateral element for stress analysis of functionally graded plates through higher-order theories. Mech. Adv. Mater. Struct. 1–20, (2017).  https://doi.org/10.1080/15376494.2017.1288994
  28. 28.
    Wisniewski, K., Turska, E.: Improved nine-node shell element MITC9i with reduced distortion sensitivity. Comput. Mech. 62, 499–523 (2018).  https://doi.org/10.1007/s00466-017-1510-4 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Cazzani, A., Serra, M., Stochino, F., Turco, E.: A refined assumed strain finite element model for statics and dynamics of laminated plates. Contin. Mech. Thermodyn. (2018).  https://doi.org/10.1007/s00161-018-0707-x
  30. 30.
    Chróścielewski, J., Makowski, J., Stumpf, H.: Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int. J. Numer. Methods Eng. 35, 63–94 (1992).  https://doi.org/10.1002/nme.1620350105 CrossRefzbMATHGoogle Scholar
  31. 31.
    Chróścielewski, J., Makowski, J., Stumpf, H.: Finite element analysis of smooth, folded and multi-shell structures. Comput. Methods Appl. Mech. Eng. 141, 1–46 (1997).  https://doi.org/10.1016/S0045-7825(96)01046-8 ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80, 73–92 (2010).  https://doi.org/10.1007/s00419-009-0365-3 ADSCrossRefzbMATHGoogle Scholar
  33. 33.
    Neff, P.: A geometrically exact Cosserat shell-model including size effects, avoiding degeneracy in the thin shell limit. Part I: formal dimensional reduction for elastic plates and existence of minimizers for positive Cosserat couple modulus. Contin. Mech. Thermodyn. 16, 577–628 (2004).  https://doi.org/10.1007/s00161-004-0182-4 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Chróścielewski, J., Sabik, A., Sobczyk, B., Witkowski, W.: 2-D constitutive equations for orthotropic Cosserat type laminated shells in finite element analysis. Compos. Part B Eng. 165, 335–353 (2019).  https://doi.org/10.1016/j.compositesb.2018.11.101 CrossRefGoogle Scholar
  35. 35.
    Sabik, A.: Progressive failure analysis of laminates in the framework of 6-field non-linear shell theory. Compos. Struct. 200, 195–203 (2018).  https://doi.org/10.1016/j.compstruct.2018.05.069 CrossRefGoogle Scholar
  36. 36.
    Burzyński, S., Chróścielewski, J., Witkowski, W.: Elastoplastic law of Cosserat type in shell theory with drilling rotation. Math. Mech. Solids. 20, 790–805 (2015).  https://doi.org/10.1177/1081286514554351 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Burzyński, S., Chróścielewski, J., Daszkiewicz, K., Witkowski, W.: Geometrically nonlinear FEM analysis of FGM shells based on neutral physical surface approach in 6-parameter shell theory. Compos. Part B Eng. 107, 203–213 (2016).  https://doi.org/10.1016/j.compositesb.2016.09.015 CrossRefGoogle Scholar
  38. 38.
    Burzyński, S., Chróścielewski, J., Daszkiewicz, K., Witkowski, W.: Elastoplastic nonlinear FEM analysis of FGM shells of Cosserat type. Compos. Part B Eng. 154, 478–491 (2018).  https://doi.org/10.1016/j.compositesb.2018.07.055 CrossRefGoogle Scholar
  39. 39.
    Atluri, S.N., Murakawa, H.: On hybrid finite element models in nonlinear solid mechanics. In: Bergan, P.G. (ed.) Finite Elements in Nonlinear Mechanics, pp. 25–69. Tapir Press, Norway (1977)Google Scholar
  40. 40.
    Murakawa, H., Atluri, S.N.: Finite elasticity solutions using hybrid finite elements based on a complementary energy principle. J. Appl. Mech. 45, 539–547 (1978)ADSCrossRefzbMATHGoogle Scholar
  41. 41.
    Cazzani, A., Atluri, S.N.: Four-noded mixed finite elements, using unsymmetric stresses, for linear analysis of membranes. Comput. Mech. 11, 229–251 (1993).  https://doi.org/10.1007/BF00371864 MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Seki, W., Atluri, S.N.: Analysis of strain localization in strain-softening hyperelastic materials, using assumed stress hybrid elements. Comput. Mech. 14, 549–585 (1994).  https://doi.org/10.1007/BF00350837 MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Seki, W., Atluri, S.N.: On newly developed assumed stress finite element formulations for geometrically and materially nonlinear problems. Finite Elem. Anal. Des. 21, 75–110 (1995).  https://doi.org/10.1016/0168-874X(95)00028-X MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Sansour, C., Bednarczyk, H.: The Cosserat surface as a shell model, theory and finite-element formulation. Comput. Methods Appl. Mech. Eng. 120, 1–32 (1995).  https://doi.org/10.1016/0045-7825(94)00054-Q ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Sansour, C., Bocko, J.: On hybrid stress, hybrid strain and enhanced strain finite element formulations for a geometrically exact shell theory with drilling degrees of freedom. Int. J. Numer. Methods Eng. 43, 175–192 (1998).  https://doi.org/10.1002/(SICI)1097-0207(19980915)43:1<175::AID-NME448>3.0.CO;2-9
  46. 46.
    Chróścielewski, J.: The family of C0 finite elements in the nonlinear six parameter shell theory (in Polish), Zeszyty Naukowe Politechniki Gdańskiej, 540, Budownictwo Lądowe, Nr 53., Gdańsk (1996)Google Scholar
  47. 47.
    Chróścielewski, J., Witkowski, W.: Four-node semi-EAS element in six-field nonlinear theory of shells. Int. J. Numer. Methods Eng. 68, 1137–1179 (2006).  https://doi.org/10.1002/nme.1740 CrossRefzbMATHGoogle Scholar
  48. 48.
    Witkowski, W.: 4-node combined shell element with semi-EAS-ANS strain interpolations in 6-parameter shell theories with drilling degrees of freedom. Comput. Mech. 43, 307–319 (2009).  https://doi.org/10.1007/s00466-008-0307-x CrossRefzbMATHGoogle Scholar
  49. 49.
    Daszkiewicz, K.: A family of hybrid mixed elements in 6-parameter shell theory, geometrically nonlinear analysis of functionally graded shells. Doctoral Thesis (in Polish) (2017)Google Scholar
  50. 50.
    Chróścielewski, J., Burzyński, S., Daszkiewicz, K., Witkowski, W.: Mixed 4-node shell element with assumed strain and stress in 6-parameter theory. In: Pietraszkiewicz, W., Witkowski, W. (eds.) Shell Structures: Theory and Applications, vol. 4, pp. 359–362. Taylor & Francis Group, London (2018)Google Scholar
  51. 51.
    Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  52. 52.
    Reissner, E.: Linear and nonlinear theory of shells. In: Fung, Y.C., Sechler, E.E. (eds.) Thin Shell Structures, pp. 29–44. Prentice-Hall, Englewood Cliffs (1974)Google Scholar
  53. 53.
    Miśkiewicz, M.: Structural response of existing spatial truss roof construction based on Cosserat rod theory. Contin. Mech. Thermodyn. 31(1), 79–99 (2019).  https://doi.org/10.1007/s00161-018-0660-8 ADSMathSciNetCrossRefGoogle Scholar
  54. 54.
    Eremeyev, V.A., Zubov, L.M.: On constitutive inequalities in nonlinear theory of elastic shells. ZAMM Zeitschrift fur. Angew. Math. und Mech. 87, 94–101 (2007).  https://doi.org/10.1002/zamm.200610304 CrossRefzbMATHGoogle Scholar
  55. 55.
    Chróścielewski, J., Witkowski, W.: Discrepancies of energy values in dynamics of three intersecting plates. Int. J. Numer. Method. Biomed. Eng. 26, 1188–1202 (2010).  https://doi.org/10.1002/cnm.1208 CrossRefzbMATHGoogle Scholar
  56. 56.
    Eremeyev, V.A., Lebedev, L.P.: Existence theorems in the linear theory of micropolar shells. ZAMM Zeitschrift fur Angew. Math. und Mech. 91, 468–476 (2011).  https://doi.org/10.1002/zamm.201000204 zbMATHGoogle Scholar
  57. 57.
    Eremeyev, V.A., Lebedev, L.P., Cloud, M.J.: The Rayleigh and Courant variational principles in the six-parameter shell theory. Math. Mech. Solids 20, 806–822 (2015).  https://doi.org/10.1177/1081286514553369 MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Pietraszkiewicz, W., Eremeyev, V.A.: Natural lagrangian strain measures of the non-linear cosserat continuum. In: Maugin, G.A., Metrikine, A.V. (eds.) Mechanics of Generalized Continua, pp. 79–86. Springer, Berlin (2010)CrossRefGoogle Scholar
  59. 59.
    Pietraszkiewicz, W., Eremeyev, V.A.: On vectorially parameterized natural strain measures of the non-linear Cosserat continuum. Int. J. Solids Struct. 46, 2477–2480 (2009).  https://doi.org/10.1016/j.ijsolstr.2009.01.030 CrossRefzbMATHGoogle Scholar
  60. 60.
    Pietraszkiewicz, W., Konopińska, V.: On unique kinematics for the branching shells. Int. J. Solids Struct. 48, 2238–2244 (2011).  https://doi.org/10.1016/j.ijsolstr.2011.03.029 CrossRefGoogle Scholar
  61. 61.
    Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon Press, Oxford (1986)zbMATHGoogle Scholar
  62. 62.
    Washizu, K.: On the variational principles of elasticity and plasticity. Aeroelastic and Structures Research Laboratory Technical Report No. 25-18., Cambridge (1955)Google Scholar
  63. 63.
    Wisniewski, K., Turska, E.: Improved four-node Hellinger–Reissner elements based on skew coordinates. Int. J. Numer. Methods Eng. 76, 798–836 (2008).  https://doi.org/10.1002/nme.2343 MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Wisniewski, K., Turska, E.: Improved 4-node Hu–Washizu elements based on skew coordinates. Comput. Struct. 87, 407–424 (2009).  https://doi.org/10.1016/j.compstruc.2009.01.011 CrossRefGoogle Scholar
  65. 65.
    Yuan, K.-Y., Huang, Y.-S., Pian, T.H.H.: New strategy for assumed stresses for 4-node hybrid stress membrane element. Int. J. Numer. Methods Eng. 36, 1747–1763 (1993).  https://doi.org/10.1002/nme.1620361009 CrossRefzbMATHGoogle Scholar
  66. 66.
    Wiśniewski, K.: Finite Rotation Shells. Springer, Barcelona (2010)CrossRefzbMATHGoogle Scholar
  67. 67.
    Klinkel, S., Gruttmann, F., Wagner, W.: A mixed shelf formulation accounting for thickness strains and finite strain 3d material models. Int. J. Numer. Methods Eng. 74, 945–970 (2008).  https://doi.org/10.1002/nme.2199 CrossRefzbMATHGoogle Scholar
  68. 68.
    Wisniewski, K., Wagner, W., Turska, E., Gruttmann, F.: Four-node Hu–Washizu elements based on skew coordinates and contravariant assumed strain. Comput. Struct. 88, 1278–1284 (2010).  https://doi.org/10.1016/j.compstruc.2010.07.008 CrossRefGoogle Scholar
  69. 69.
    Pietraszkiewicz, W.: The resultant linear six-field theory of elastic shells: what it brings to the classical linear shell models? ZAMM J. Appl. Math. Mech./Zeitschrift für Angew. Math. und Mech. 96, 899–915 (2016).  https://doi.org/10.1002/zamm.201500184 ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    Kasper, E.P., Taylor, R.L.: Mixed-enhanced strain method. Part II: geometrically nonlinear problems. Comput. Struct. 75, 251–260 (2000).  https://doi.org/10.1016/S0045-7949(99)00135-2 CrossRefGoogle Scholar
  71. 71.
    Piltner, R., Taylor, R.L.: A systematic construction of B-bar functions for linear and non-linear mixed-enhanced finite elements for plane elasticity problems. Int. J. Numer. Methods Eng. 44, 615–639 (1999).  https://doi.org/10.1002/(SICI)1097-0207(19990220)44:5<615::AID-NME518>3.0.CO;2-U
  72. 72.
    Burzyński, S., Chróścielewski, J., Witkowski, W.: Geometrically nonlinear FEM analysis of 6-parameter resultant shell theory based on 2-D Cosserat constitutive model. ZAMM J. Appl. Math. Mech./Zeitschrift für.Angew. Math. und Mech. 96, 191–204 (2016).  https://doi.org/10.1002/zamm.201400092 ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    Chróścielewski, J., Pietraszkiewicz, W., Witkowski, W.: On shear correction factors in the non-linear theory of elastic shells. Int. J. Solids Struct. 47, 3537–3545 (2010).  https://doi.org/10.1016/j.ijsolstr.2010.09.002 CrossRefzbMATHGoogle Scholar
  74. 74.
    Macneal, R.H., Harder, R.L.: A proposed standard set of problems to test finite element accuracy. Finite Elem. Anal. Des. 1, 3–20 (1985).  https://doi.org/10.1016/0168-874X(85)90003-4 CrossRefGoogle Scholar
  75. 75.
    Cook, R.D.: Improved two-dimensional finite element. J. Struct. Div. 100, 1851–1863 (1974)Google Scholar
  76. 76.
    Piltner, R., Taylor, R.L.: A quadrilateral mixed finite element with two enhanced strain modes. Int. J. Numer. Methods Eng. 38, 1783–1808 (1995).  https://doi.org/10.1002/nme.1620381102 MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Argyris, J.H., Balmer, H., Doltsinis, J.S., Dunne, P.C., Haase, M., Kleiber, M., Malejannakis, G.A., Mlejnek, H.-P., Müller, M., Scharpf, D.W.: Finite element method: the natural approach. Comput. Methods Appl. Mech. Eng. 17(18), 1–106 (1979)ADSCrossRefzbMATHGoogle Scholar
  78. 78.
    Simo, J.C., Fox, D.D., Rifai, M.S.: On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory. Comput. Methods Appl. Mech. Eng. 79, 21–70 (1990).  https://doi.org/10.1016/0045-7825(90)90094-3
  79. 79.
    Stander, N., Matzenmiller, A., Ramm, E.: An assessment of assumed strain methods in finite rotation shell analysis. Eng. Comput. 6, 58–66 (1989).  https://doi.org/10.1108/eb023760 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental EngineeringGdansk University of TechnologyGdańskPoland

Personalised recommendations