Skip to main content
Log in

Energy-based analysis of temperature oscillation at the shakedown state in shape memory alloys

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper documents an energy-based analysis of temperature oscillation during cyclic stress-induced phase transformation in shape memory alloys (SMAs). The conversion of total hysteresis work into dissipated heat and stored energy in SMAs is discussed, and the temperature oscillation at the shakedown state in cyclically loaded SMAs is modeled. To validate the theoretical model, both strain and stress-controlled tensile tests on pseudoelastic NiTi wires are performed under cyclic loading and an infrared camera is used to record the surface temperature of the wire. The results show that depending of the loading type, strain or stress-controlled loading, the amplitude of temperature oscillation during cyclic stress-induced phase transformation evolves differently with the frequency: The amplitude of the temperature oscillation under strain-controlled loading gradually reaches a saturated value independent of the frequency; however, for stress-controlled loading, the saturated temperature amplitude is frequency-dependent since it reduces significantly if the frequency is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jani, J.M., Leary, M., Subic, A., Gibson, M.A.: A review of shape memory alloy research, applications and opportunities. Mater. Des. (1980–2015) 56(Supplement C), 1078–1113 (2014). https://doi.org/10.1016/j.matdes.2013.11.084

    Article  Google Scholar 

  2. Tokuda, M., Ye, M., Takakura, M., Sittner, P.: Thermomechanical behavior of shape memory alloy under complex loading conditions. Int. J. Plast. 15(2), 223–239 (1999). https://doi.org/10.1016/S0749-6419(98)00066-7

    Article  MATH  Google Scholar 

  3. Shaw, J.A.: Simulations of localized thermo-mechanical behavior in a NiTi shape memory alloy. Int. J. Plast. 16(5), 541–562 (2000). https://doi.org/10.1016/S0749-6419(99)00075-3

    Article  MATH  Google Scholar 

  4. Sedlák, P., Frost, M., Benešová, B., Zineb, T.B., Šttner, P.: Thermomechanical model for NiTi-based shape memory alloys including r-phase and material anisotropy under multi-axial loadings. Int. J. Plast. 39, 132–151 (2012). https://doi.org/10.1016/j.ijplas.2012.06.008

    Article  Google Scholar 

  5. Benafan, O., Noebe, R., Padula, S., Garg, A., Clausen, B., Vogel, S., Vaidyanathan, R.: Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy. Int. J. Plast. 51, 103–121 (2013). https://doi.org/10.1016/j.ijplas.2013.06.003

    Article  Google Scholar 

  6. Soul, H., Isalgue, A., Yawny, A., Torra, V., Lovey, F.C.: Pseudoelastic fatigue of NiTi wires: frequency and size effects on damping capacity. Smart Mater. Struct. 19, 085006 (2010). https://doi.org/10.1088/0964-1726/19/8/085006

    Article  ADS  Google Scholar 

  7. Shaw, J.A., Kyriakides, S.: Thermomechanical aspects of NiTi. J. Mech. Phys. Solids 43(8), 1243–1281 (1995). https://doi.org/10.1016/0022-5096(95)00024-D

    Article  ADS  Google Scholar 

  8. Entemeyer, D., Patoor, E., Eberhardt, A., Berveiller, M.: Strain rate sensitivity in superelasticity. Int. J. Plast. 16, 1269–1288 (2000). https://doi.org/10.1016/S0749-6419(00)00010-3

    Article  MATH  Google Scholar 

  9. Grabe, C., Bruhns, O.: On the viscous and strain rate dependent behavior of polycrystalline NiTi. Int. J. Solids Struct. 45(7–8), 1876–1895 (2008). https://doi.org/10.1016/j.ijsolstr.2007.10.029

    Article  MATH  Google Scholar 

  10. Morin, C., Moumni, Z., Zaki, W.: A constitutive model for shape memory alloys accounting for thermomechanical coupling. Int. J. Plast. 27(5), 748–767 (2010). https://doi.org/10.1016/j.ijplas.2010.09.005

    Article  MATH  Google Scholar 

  11. Morin, C., Moumni, Z., Zaki, W.: Thermomechanical coupling in shape memory alloys under cyclic loadings: experimental analysis and constitutive modeling. Int. J. Plast. 27(12), 1959–1980 (2011). https://doi.org/10.1016/j.ijplas.2011.05.005

    Article  MATH  Google Scholar 

  12. He, Y.J., Sun, Q.P.: Frequency-dependent temperature evolution in NiTi shape memory alloy under cyclic loading. Smart Mater. Struct. 19(11), 115014 (2010). https://doi.org/10.1088/0964-1726/19/11/115014

    Article  ADS  Google Scholar 

  13. He, Y.J., Sun, Q.P.: On non-monotonic rate dependence of stress hysteresis of superelastic shape memory alloy bars. Int. J. Solids Struct. 48, 1688–1695 (2011). https://doi.org/10.1016/j.ijsolstr.2011.02.017

    Article  MATH  Google Scholar 

  14. Pieczyska, E.A., Tobushi, H., Kulasinski, K., Takeda, K.: Impact of strain rate on thermomechanical coupling effects in TiNi SMA subjected to compression. Mater. Trans. 53(11), 1905–1909 (2012). https://doi.org/10.2320/matertrans.M2012212

    Article  Google Scholar 

  15. Yin, H., Yan, Y., Huo, Y., Sun, Q.: Rate dependent damping of single crystal CuAlNi shape memory alloy. Mater. Lett. 109, 287–290 (2013). https://doi.org/10.1016/j.matlet.2013.07.062

    Article  Google Scholar 

  16. Yu, C., Kang, G., Kan, Q., Zhu, Y.: Rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy: thermo-mechanical coupled and physical mechanism-based constitutive model. Int. J. Plast. 72, 60–90 (2015). https://doi.org/10.1016/j.ijplas.2015.05.011

    Article  Google Scholar 

  17. Kan, Q., Yu, C., Kang, G., Li, J., Yan, W.: Mechanics of materials experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy. Mech. Mater. 97, 48–58 (2016). https://doi.org/10.1016/j.mechmat.2016.02.011

    Article  Google Scholar 

  18. Xie, X., Kan, Q., Kang, G., Lu, F., Chen, K.: Observation on rate-dependent cyclic transformation domain of super-elastic NiTi shape memory alloy. Mater. Sci. Eng. A 671, 32–47 (2016). https://doi.org/10.1016/j.msea.2016.06.045

    Article  Google Scholar 

  19. Wang, J., Moumni, Z., Zhang, W.: A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys. Int. J. Plast. https://doi.org/10.1016/j.ijplas.2017.06.003

  20. Tobushi, H., Takafumi, N., Shimeno, Y., Takahiro, H.: Low-cycle fatigue of TiNi shape memory alloy and formulation of fatigue life. J. Eng. Mater. Technol. ASME 122(2), 186–191 (2000). https://doi.org/10.1115/1.482785

    Article  Google Scholar 

  21. Eggeler, G., Hornbogen, E., Yawny, A., Heckmann, A., Wagner, M.: Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng. A 378(1–2), 24–33 (2004). https://doi.org/10.1016/j.msea.2003.10.327

    Article  Google Scholar 

  22. Matsui, R., Tobushi, H., Furuichi, Y., Horikawa, H.: Tensile deformation and rotating–bending fatigue properties of a highelastic thin wire, a superelastic thin wire, and a superelastic thin tube of NiTi alloys. J. Eng. Mater. Technol. 126(4), 384 (2004). https://doi.org/10.1115/1.1789952

    Article  Google Scholar 

  23. Wagner, M., Sawaguchi, T., Kausträter, G., Höffken, D., Eggeler, G.: Structural fatigue of pseudoelastic NiTi shape memory wires. Mater. Sci. Eng. A 378(1–2), 105–109 (2004). https://doi.org/10.1016/j.msea.2003.11.058

    Article  Google Scholar 

  24. Zhang, Y., Zhu, J., Moumni, Z., Zhang, W.: Energy-based fatigue model for shape memory alloys including thermomechanical coupling. Smart Mater. Struct. 25(3), 035042 (2016). https://doi.org/10.1088/0964-1726/25/3/035042

    Article  ADS  Google Scholar 

  25. Zhang, Y., You, Y., Moumni, Z., Anlas, G., Zhu, J., Zhang, W.: Experimental and theoretical investigation of the frequency effect on low cycle fatigue of shape memory alloys. Int. J. Plast. 90, 1–30 (2017). https://doi.org/10.1016/j.ijplas.2016.11.012

    Article  Google Scholar 

  26. Hornbogen, E.: Review thermo-mechanical fatigue of shape memory alloys. J. Mater. Sci. 39(2), 385–399 (2004). https://doi.org/10.1023/B:JMSC.0000011492.88523.d3

    Article  ADS  Google Scholar 

  27. Zheng, L., He, Y., Moumni, Z.: Lüders-like band front motion and fatigue life of pseudoelastic polycrystalline NiTi shape memory alloy. Scr. Mater. 123, 46–50 (2016). https://doi.org/10.1016/j.scriptamat.2016.05.042

    Article  Google Scholar 

  28. Zheng, L., He, Y., Moumni, Z.: Investigation on fatigue behaviors of NiTi polycrystalline strips under stress-controlled tension via in-situ macro-band observation. Int. J. Plast. 90, 116–145 (2017). https://doi.org/10.1016/j.ijplas.2016.12.008

    Article  Google Scholar 

  29. Chang, B.-C., Shaw, J.A., Iadicola, M.A.: Thermodynamics of shape memory alloy wire: modeling, experiments, and application. Contin. Mech. Thermodyn. 18(1), 83–118 (2006). https://doi.org/10.1007/s00161-006-0022-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Cisse, C., Zaki, W., Zineb, T.B.: A review of constitutive models and modeling techniques for shape memory alloys. Int. J. Plast. 76, 244–284 (2016). https://doi.org/10.1016/j.ijplas.2015.08.006

    Article  Google Scholar 

  31. Haller, L., Nedjar, B., Moumni, Z., Vedinaş, I., Trană, E.: A thermomechanical model accounting for the behavior of shape memory alloys in finite deformations. Contin. Mech. Thermodyn. 28(4), 957–975 (2016). https://doi.org/10.1007/s00161-015-0431-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Soldatos, D., Triantafyllou, S.P., Panoskaltsis, V.P.: Thermomechanical couplings in shape memory alloy materials. Contin. Mech. Thermodyn. 29(3), 805–834 (2017). https://doi.org/10.1007/s00161-017-0559-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Rosakis, P., Rosakis, A.J., Ravichandran, G.: A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals. J. Mech. Phys. Solids 48, 581–607 (2000). https://doi.org/10.1016/S0022-5096(99)00048-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Moumni, Z., Van Herpen, A., Riberty, P.: Fatigue analysis of shape memory alloys: energy approach. Smart Mater. Struct. 14(5), S287 (2005). https://doi.org/10.1088/0964-1726/14/5/017

    Article  Google Scholar 

  35. Zaki, W., Moumni, Z.: A 3D model of the cyclic thermomechanical behavior of shape memory alloys. J. Mech. Phys. Solids 55(11), 2427–2454 (2007). https://doi.org/10.1016/j.jmps.2007.03.011

    Article  ADS  MATH  Google Scholar 

  36. Gu, X., Zhang, W., Zaki, W., Moumni, Z.: An extended thermomechanically coupled 3D rate-dependent model for pseudoelastic smas under cyclic loading. Smart Mater. Struct. 26(9), 095047 (2017)

    Article  ADS  Google Scholar 

  37. Wang, J., Moumni, Z., Zhang, W.: A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys. Int. J. Plast. 97(Supplement C), 194–221 (2017). https://doi.org/10.1016/j.ijplas.2017.06.003

    Article  Google Scholar 

  38. He, Y., Sun, Q.: Rate-dependent domain spacing in a stretched NiTi strip. Int. J. Solids Struct. 47(20), 2775–2783 (2010). https://doi.org/10.1016/j.ijsolstr.2010.06.006

    Article  MATH  Google Scholar 

  39. Zhang, S., He, Y.: Fatigue resistance of branching phase-transformation fronts in pseudoelastic NiTi polycrystalline strips. Int. J. Solids Struct. 135, 233–244 (2018). https://doi.org/10.1016/j.ijsolstr.2017.11.023

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Research and Development Program of China (2017YFB1102800) and National Natural Science Foundation of China (11620101002, 51761145111, 51790171). Ziad Moumni would like to acknowledge SAFEA (State Administration of Foreign Expert of China) for their financial support (WQ20116100007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahui Zhang.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Moumni, Z., You, Y. et al. Energy-based analysis of temperature oscillation at the shakedown state in shape memory alloys. Continuum Mech. Thermodyn. 31, 1387–1399 (2019). https://doi.org/10.1007/s00161-019-00751-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00751-9

Keywords

Navigation