Skip to main content
Log in

Unraveling Frequency Effects in Shape Memory Alloys: NiTi and FeMnAlNi

  • Technical Article
  • Published:
Shape Memory and Superelasticity Aims and scope Submit manuscript

Abstract

With the presence of internal interfaces such as the austenite–martensite interface and the internal twin boundaries in the martensite, shape memory alloys (SMAs) can be employed in passive/active damping applications. Due to the latent heat of transformation, a temperature rise/drop during a load/unload cycle is expected to dynamically couple with the mechanical response of the SMA and influence the stress levels of forward/reverse transformation and thus the hysteretic area (i.e. the dissipated energy). Additionally, the temperature change per cycle is a function of loading frequency due to momentary heat transfer effects. To this end, for the first time, we demonstrate a rate insensitive shape memory alloy system, Fe43.5Mn34Al15Ni7.5 which also exhibits near-zero temperature dependent stress–strain response. Contrastingly, we show that Ni50.8Ti, which is widely used commercially, is highly rate sensitive. With straightforward in situ experiments, complemented with thermomechanical modelling, we pinpoint the key material parameter which dictates frequency sensitivity. The corresponding results are then discussed in the light of different mechanisms contributing to the damping capacity of SMAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  2. Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Ins Mech Eng G 221(4):535–552

    Article  CAS  Google Scholar 

  3. Janke L, Czaderski C, Motavalli M, Ruth J (2005) Applications of shape memory alloys in civil engineering structures—overview, limits and new ideas. Mater Struct 38(5):578–592

    Article  CAS  Google Scholar 

  4. Safranski D, Dupont K, Gall K (2020) Pseudoelastic NiTiNOL in Orthopaedic Applications. Shape Memory and Superelasticity 6(3):332–341

    Article  Google Scholar 

  5. Song S-H, Lee J-Y, Rodrigue H, Choi I-S, Kang YJ, Ahn S-H (2016) 35 Hz shape memory alloy actuator with bending-twisting mode. Sci Rep 6:21118

    Article  CAS  Google Scholar 

  6. Duerig TW (2002) The use of superelasticity in modern medicine. MRS Bull 27(2):101–104

    Article  Google Scholar 

  7. Torra V, Martorell F, Lovey FC, Sade ML (2017) Civil engineering applications: specific properties of NiTi thick wires and their damping capabilities. a review. Shap Mem Superelasticity 3(4):403–413

    Article  Google Scholar 

  8. Williams EA, Shaw G, Elahinia M (2010) Control of an automotive shape memory alloy mirror actuator. Mechatronics 20(5):527–534

    Article  Google Scholar 

  9. Karaman I, Basaran B, Karaca HE, Karsilayan AI, Chumlyakov YI (2007) Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy. Appl Phys Lett 90(17):172505

    Article  CAS  Google Scholar 

  10. Pagounis E, Muellner P (2018) materials and actuator solutions for advanced magnetic shape memory devices, ACTUATOR 2018; 16th International Conference on New Actuators, pp. 1–7

  11. Bucsek AN, Nunn W, Jalan B, James RD (2020) energy conversion by phase transformation in the small-temperature-difference regime. Annu Rev Mater Res 50:283–318

    Article  CAS  Google Scholar 

  12. Müller I, Xu H (1991) On the pseudo-elastic hysteresis. Acta Metall Mater 39(3):263–271

    Article  Google Scholar 

  13. Blanter MS, Golovin IS, Neuhäuser H, Sinning H-R (2007) Other mechanisms of internal friction, internal friction in metallic materials: a handbook. Springer, Berlin Heidelberg, pp 121–155

    Google Scholar 

  14. San Juan J, Nó M (2003) Damping behavior during martensitic transformation in shape memory alloys. J alloys compds 355(1–2):65–71

    Article  CAS  Google Scholar 

  15. Van Humbeeck J (2001) 5.3 the martensitic transformation. Mater Sci Forum 366–368:382–415

    Article  Google Scholar 

  16. Kumar PK, Lagoudas DC (2008) Introduction to shape memory alloys, shape memory alloys: modeling and engineering applications. Springer, Boston, pp 1–51

    Book  Google Scholar 

  17. Juan JS, Nó ML, Schuh CA (2009) Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat Nanotechnol 4(7):415–419

    Article  CAS  Google Scholar 

  18. Bidaux J-E, Schaller R, Benoit W (1989) Study of the hcp-fcc phase transition in cobalt by acoustic measurements. Acta Metall 37(3):803–811

    Article  CAS  Google Scholar 

  19. San Juan J, Perez-Saez RB (2001) 5.4 transitory effects. Mater Sci Forum 366–368:416–436

    Article  Google Scholar 

  20. Van Humbeeck J (2003) Damping capacity of thermoelastic martensite in shape memory alloys. J Alloy Compd 355(1):58–64

    Article  CAS  Google Scholar 

  21. Segui C, Cesari E, Pons J, Chernenko V (2004) Internal friction behaviour of Ni–Mn–Ga. Mater Sci Eng A 370(1):481–484

    Article  CAS  Google Scholar 

  22. Chen Y, Jiang HC, Liu SW, Rong LJ, Zhao XQ (2009) Damping capacity of TiNi-based shape memory alloys. J Alloy Compd 482(1):151–154

    Article  CAS  Google Scholar 

  23. He Y, Yin H, Zhou R, Sun Q (2010) Ambient effect on damping peak of NiTi shape memory alloy. Mater Lett 64(13):1483–1486

    Article  CAS  Google Scholar 

  24. Dayananda GN, Rao MS (2008) Effect of strain rate on properties of superelastic NiTi thin wires. Mater Sci Eng A 486(1):96–103

    Article  CAS  Google Scholar 

  25. Dolce M, Cardone D (2001) Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension. int J Mech Sci 43(11):2657–2677

    Article  Google Scholar 

  26. DesRoches R, McCormick J, Delemont M (2004) Cyclic properties of superelastic shape memory alloy wires and bars. J Struct Eng 130(1):38–46

    Article  Google Scholar 

  27. Nemat-Nasser S, Yong Choi J, Guo W-G, Isaacs JB, Taya M (2005) High strain-rate, small strain response of a NiTi shape-memory alloy. J Eng Mater Technol 127(1):83–89

    Article  CAS  Google Scholar 

  28. Malécot P, Lexcellent C, Foltête E, Collet M (2006) Shape memory alloys cyclic behavior: experimental study and modeling. J Eng Mater Technol 128(3):335–345

    Article  CAS  Google Scholar 

  29. Tobushi H, Shimeno Y, Hachisuka T, Tanaka K (1998) Influence of strain rate on superelastic properties of TiNi shape memory alloy. Mech Mater 30(2):141–150

    Article  Google Scholar 

  30. Heller L, Šittner P, Pilch J, Landa M (2009) Factors controlling superelastic damping capacity of SMAs. J Mater Eng Perform 18(5):603–611

    Article  CAS  Google Scholar 

  31. Yin H, He Y, Sun Q (2014) Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy. J Mech Phys Solids 67:100–128

    Article  CAS  Google Scholar 

  32. Zhang X, Feng P, He Y, Yu T, Sun Q (2010) Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips. Int J Mech Sci 52(12):1660–1670

    Article  Google Scholar 

  33. Van Humbeeck J, Delaey L (1981) THE influence of strain-rate, amplitude and temperature on the hysteresis of a pseudoelastic Cu-Zn-Al single crystal. J Phys Colloques 42(C5):C5-1007-C5-1011

    Google Scholar 

  34. Hartl DJ, Lagoudas DC (2008) Thermomechanical characterization of shape memory alloy materials, shape memory alloys: modeling and engineering applications. Springer, Boston, pp 53–119

    Google Scholar 

  35. Leo PH, Shield TW, Bruno OP (1993) Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires. Acta Metall Mater 41(8):2477–2485

    Article  CAS  Google Scholar 

  36. Shaw JA, Kyriakides S (1995) Thermomechanical aspects of NiTi. J Mech Phys Solids 43(8):1243–1281

    Article  CAS  Google Scholar 

  37. Yin H, Yan Y, Huo Y, Sun Q (2013) Rate dependent damping of single crystal CuAlNi shape memory alloy. Mater Lett 109:287–290

    Article  CAS  Google Scholar 

  38. Zener C (1938) Internal friction in solids II. General theory of thermoelastic internal friction. Phys Rev 53(1):90

    Article  Google Scholar 

  39. Moumni Z, Herpen AV, Riberty P (2005) Fatigue analysis of shape memory alloys: energy approach. Smart Mater Struct 14(5):S287–S292

    Article  Google Scholar 

  40. Sateesh VL, Senthilkumar P, Satisha, Dayananda GN (2014) Low Cycle fatigue evaluation of NiTi SESMA thin wires. J Mater Eng Perform 23(7):2429–2436

    Article  CAS  Google Scholar 

  41. Zhang Y, You Y, Moumni Z, Anlas G, Zhu J, Zhang W (2017) Experimental and theoretical investigation of the frequency effect on low cycle fatigue of shape memory alloys. Int J Plast 90:1–30

    Article  CAS  Google Scholar 

  42. Dejonghe W, Batist D (1976) Factors affecting the internal friction peak due to thermoelastic martensitic transformation. Scripta Metallurgica 10:1125–1128

    Article  CAS  Google Scholar 

  43. Perez-Saez R, Recarte V, Nó M, San Juan J (1998) Anelastic contributions and transformed volume fraction during thermoelastic martensitic transformations. Phys Rev B 57(10):5684

    Article  CAS  Google Scholar 

  44. Mercier O, Melton K (1976) The influence of an anisotrophic elastic medium on the motion of dislocations: application to the martensitic transformation. Scr Metall 10(12):1075–1080

    Article  CAS  Google Scholar 

  45. Hornbogen E (1985) The effect of variables on martensitic transformation temperatures. Acta Metall 33(4):595–601

    Article  CAS  Google Scholar 

  46. Hornbogen E (2004) Review thermo-mechanical fatigue of shape memory alloys. J Mater Sci 39(2):385–399

    Article  CAS  Google Scholar 

  47. Olson G, Cohen M (1975) Thermoelastic behavior in martensitic transformations. Scr Metall 9(11):1247–1254

    Article  CAS  Google Scholar 

  48. Roitburd A, Kurdjumov G (1979) The nature of martensitic transformations. Mater Sci Eng 39(2):141–167

    Article  CAS  Google Scholar 

  49. Bhattacharya K (2003) Microstructure of martensite: why it forms and how it gives rise to the shape-memory effect. Oxford University Press, Oxford

    Google Scholar 

  50. Bhattacharya K, Conti S, Zanzotto G, Zimmer J (2004) Crystal symmetry and the reversibility of martensitic transformations. Nature 428(6978):55

    Article  CAS  Google Scholar 

  51. Kajiwara S (1999) Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys. Mater Sci Eng A 273–275:67–88

    Article  Google Scholar 

  52. Kajiwara S, Owen WS (1977) The martensite-austenite interface and the thickness of twins in martensite in Fe3Pt. Scr Metall 11(2):137–142

    Article  CAS  Google Scholar 

  53. Mohammed ASK, Sehitoglu H (2020) Martensitic twin boundary migration as a source of irreversible slip in shape memory alloys. Acta Mater 186:50–67

    Article  CAS  Google Scholar 

  54. Simon T, Kröger A, Somsen C, Dlouhy A, Eggeler G (2010) On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Mater 58(5):1850–1860

    Article  CAS  Google Scholar 

  55. Humbeeck JV, Kustov S (2005) Active and passive damping of noise and vibrations through shape memory alloys: applications and mechanisms. Smart Mater Struct 14(5):S171–S185

    Article  Google Scholar 

  56. Vollmer M, Krooß P, Karaman I, Niendorf T (2017) On the effect of titanium on quenching sensitivity and pseudoelastic response in Fe-Mn-Al-Ni-base shape memory alloy. Scripta Mater 126:20–23

    Article  CAS  Google Scholar 

  57. Abuzaid W, Wu Y, Sidharth R, Brenne F, Alkan S, Vollmer M, Krooß P, Niendorf T, Sehitoglu H (2019) FeMnNiAl iron-based shape memory alloy: promises and challenges. Shap Mem Superelasticity 5:263–277

    Article  Google Scholar 

  58. Xia J, Noguchi Y, Xu X, Odaira T, Kimura Y, Nagasako M, Omori T, Kainuma R (2020) Iron-based superelastic alloys with near-constant critical stress temperature dependence. Science 369(6505):855–858

    Article  CAS  Google Scholar 

  59. Omori T, Ando K, Okano M, Xu X, Tanaka Y, Ohnuma I, Kainuma R, Ishida K (2011) Superelastic effect in polycrystalline ferrous alloys. Science 333(6038):68–71

    Article  CAS  Google Scholar 

  60. Vollmer M, Baunack D, Janoschka D, Niendorf T (2020) Induction butt welding followed by abnormal grain growth: a promising route for joining of Fe–Mn–Al–Ni tubes. Shap Mem Superelasticity. 6:131–138

    Article  Google Scholar 

  61. Sidharth R, Wu Y, Brenne F, Abuzaid W, Sehitoglu H (2020) Relationship between functional fatigue and structural fatigue of iron-based shape memory alloy FeMnNiAl. Shap Mem Superelasticity. 6:256–272

    Article  Google Scholar 

  62. Van Humbeeck J (2001) Shape memory alloys: a material and a technology. Adv Eng Mater 3(11):837–850

    Article  Google Scholar 

  63. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50(5):511–678

    Article  CAS  Google Scholar 

  64. Calvi A (2011) Spacecraft loads analysis. ESA/ESTEC, Noordwijk, The Netherlands

  65. Torra V, Isalgue A, Lovey FC, Sade M (2015) Shape memory alloys as an effective tool to damp oscillations. J Therm Anal Calorim 119(3):1475–1533

    Article  CAS  Google Scholar 

  66. Ahadi A, Sun Q (2013) Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi—effects of grain size. Appl Phys Lett 103(2):021902

    Article  CAS  Google Scholar 

  67. He YJ, Sun QP (2011) On non-monotonic rate dependence of stress hysteresis of superelastic shape memory alloy bars. Int J Solids Struct 48(11):1688–1695

    Article  CAS  Google Scholar 

  68. He YJ, Sun QP (2011) Rate-dependent damping capacity of NiTi shape memory alloy. Solid State Phenom 172–174:37–42

    Article  CAS  Google Scholar 

  69. Sun S, Rajapakse RKND (2003) Simulation of pseudoelastic behaviour of SMA under cyclic loading. Comput Mater Sci 28(3):663–674

    Article  Google Scholar 

  70. Ikeda TJ (2015) Analytical investigation of strain loading frequency effect on stress-strain-temperature relationship of shape-memory alloy. Archiv Mech 67(4):275–291

    Google Scholar 

  71. Yu C, Kang G, Kan Q, Zhu Y (2015) Rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy: thermo-mechanical coupled and physical mechanism-based constitutive model. Int J Plast 72:60–90

    Article  CAS  Google Scholar 

  72. Huang M, Brinson LC (1998) A multivariant model for single crystal shape memory alloy behavior. J Mech Phys Solids 46(8):1379–1409

    Article  CAS  Google Scholar 

  73. Gall K, Sehitoglu H (1999) The role of texture in tension–compression asymmetry in polycrystalline NiTi. Int J Plast 15(1):69–92

    Article  CAS  Google Scholar 

  74. Hamilton RF, Sehitoglu H, Chumlyakov Y, Maier H (2004) Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater 52(11):3383–3402

    Article  CAS  Google Scholar 

  75. Omori T, Nagasako M, Okano M, Endo K, Kainuma R (2012) Microstructure and martensitic transformation in the Fe-Mn-Al-Ni shape memory alloy with B2-type coherent fine particles. Appl Phys Lett 101(23):231907

    Article  CAS  Google Scholar 

  76. Mura T (1987) Isotropic inclusions. In: Mura T (ed) Micromechanics of defects in solids. Springer, Dordrecht, pp 74–128

    Chapter  Google Scholar 

  77. Ren G, Sehitoglu H (2016) Interatomic potential for the NiTi alloy and its application. Comput Mater Sci 123:19–25

    Article  CAS  Google Scholar 

  78. Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Springer, Berlin

    Google Scholar 

  79. Duerig TW, Melton K, Stöckel D (2013) Engineering aspects of shape memory alloys. Butterworth-heinemann, Oxford

    Google Scholar 

  80. Tanaka K, Kobayashi S, Sato Y (1986) Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys. Int J Plast 2(1):59–72

    Article  CAS  Google Scholar 

  81. Liu Y, Galvin S (1997) Criteria for pseudoelasticity in near-equiatomic NiTi shape memory alloys. Acta Mater 45(11):4431–4439

    Article  CAS  Google Scholar 

  82. Patoor E, El Amrani M, Eberhardt A, Berveiller M (1995) Determination of the origin for the dissymmetry observed between tensile and compression tests on shape memory alloys. Le Journal de Physique IV 5(C2):C2-495-C2-500

    Google Scholar 

  83. Hirth J, Wang J, Tomé C (2016) Disconnections and other defects associated with twin interfaces. Prog Mater Sci 83:417–471

    Article  Google Scholar 

  84. Mohammed ASK, Sehitoglu H (2020) Modeling the interface structure of type II twin boundary in B19′ NiTi from an atomistic and topological standpoint. Acta Mater 183:93–109

    Article  CAS  Google Scholar 

  85. Mohammed ASK, Sehitoglu H (2021) Strain-sensitive Topological Evolution of Twin Interfaces. Acta Materialia 208:116716

    Article  CAS  Google Scholar 

  86. Kajiwara S, Kikuchi T (1982) Dislocation structures produced by reverse martensitic transformation in a Cu Zn alloy. Acta Metall 30(2):589–598

    Article  CAS  Google Scholar 

  87. Kajiwara S, Kikuchi T (1983) Reversible movement of the austenite-martensite interface and dislocation structures in reverse-transformed austenite in Fe-Ni-C alloys. Philos Mag A 48(4):509–526

    Article  CAS  Google Scholar 

  88. Sehitoglu H, Wu Y, Alkan S, Ertekin E (2017) Plastic deformation of B2-NiTi–is it slip or twinning? Philos Mag Lett 97(6):217–228

    Article  CAS  Google Scholar 

  89. Tseng L, Ma J, Hornbuckle B, Karaman I, Thompson G, Luo Z, Chumlyakov Y (2015) The effect of precipitates on the superelastic response of [1 0 0] oriented FeMnAlNi single crystals under compression. Acta Mater 97:234–244

    Article  CAS  Google Scholar 

  90. Tseng L, Ma J, Wang S, Karaman I, Kaya M, Luo Z, Chumlyakov Y (2015) Superelastic response of a single crystalline FeMnAlNi shape memory alloy under tension and compression. Acta Mater 89:374–383

    Article  CAS  Google Scholar 

  91. Wu Y, Ertekin E, Sehitoglu H (2017) Elastocaloric cooling capacity of shape memory alloys–Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation. Acta Mater 135:158–176

    Article  CAS  Google Scholar 

  92. Bonnot E, Romero R, Mañosa L, Vives E, Planes A (2008) Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Phys Rev Lett 100(12):125901

    Article  CAS  Google Scholar 

  93. Ojha A, Sehitoglu H (2016) Transformation stress modeling in new FeMnAlNi shape memory alloy. Int J Plast 86:93–111

    Article  CAS  Google Scholar 

  94. Liu Y, Xie Z, Van Humbeeck J, Delaey L (1998) Asymmetry of stress–strain curves under tension and compression for NiTi shape memory alloys. Acta Mater 46(12):4325–4338

    Article  CAS  Google Scholar 

  95. Sidharth R, Abuzaid W, Vollmer M, Niendorf T, Sehitoglu H (2020) Fatigue crack initiation in the iron-based shape memory alloy FeMnAlNiTi. Shap Mem Superelasticity 6(3):323–331

    Article  Google Scholar 

  96. Sehitoglu H, Karaman I, Anderson R, Zhang X, Gall K, Maier H, Chumlyakov Y (2000) Compressive response of NiTi single crystals. Acta Mater 48(13):3311–3326

    Article  CAS  Google Scholar 

  97. Vollmer M, Bauer A, Kriegel MJ, Motylenko M, Niendorf T (2021) Functionally graded structures realized based on Fe–Mn–Al–Ni shape memory alloys. Scripta Materialia 194:113619

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation DMR Grant 1709515 Metallic Materials and Nanomaterials Program which is gratefully acknowledged. We would like to thank Prof. Yuri Chumlyakov of Tomsk State University, Russia for providing the single crystals. SEM and EBSD were carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Sidharth or H. Sehitoglu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in Shape Memory and Superelasticity on the Mechanics and Physics of Active Materials and Systems. This issue was organized by Dr. Theocharis Baxevanis, University of Houston; Dr. Dimitris Lagoudas, Texas A&M University; and Dr. Ibrahim Karaman, Texas A&M University.

Appendices

Appendix

Specific Damping Capacity, Sample Variability and Clausius-Clapeyron Slope

The specific damping capacity, which is the ratio of area under the hysteresis loop and the total applied strain energy, of FeMnAlNi and NiTi is shown in Fig. 9 below. Figure 10 depicts the stress strain curves of two different FeMnAlNi samples with near < 123 > orientation and different initial microstructure, note the variability in the stress–strain behavior and the specific damping capacity. Figure 11 depicts the stress strain curves of two different NiTi samples with < 011 > loading orientation and same initial microstructure having nearly the same specific damping capacity.

Variation of transformation stress with loading temperature for FeMnAlNi and NiTi are shown in Fig. 12. The data were collected from prior studies. Note the wide range of superelastic functionality for FeMnAlNi, all the way from −196 °C to at least 240 °C. The Clausius-Clapeyron slope ranges from 0.2 to 0.6 MPa/°C. The wide range of variability in the transformation stresses can be attributed to different ageing times resulting in different precipitate sizes. The FeMnAlNi shown in Fig. 12 were aged at 200 °C for 3 h [57], 24 h [59] and 10 h [89]. Whereas, for Ni50.8Ti with an ageing time of 1.5 h at 550 °C, the superelastic functionality is limited to a temperature range of about 0–90 °C [97]. The Clausius-Clapeyron slope ranges from 7 to 10 MPa/°C.

Fig. 9
figure 9

a Specific damping capacity vs loading frequency for NiTi and FeMnAlNi single crystals. b Schematic depicting stored elastic strain energy (W) and dissipated energy (ΔW)

Fig. 10
figure 10

Stress–Strain behavior of two FeMnAlNi samples with near < 123 > orientation and different initial microstructure. Note the values of specific damping capacity. DIC insets depict only one dominant variant is active for both the samples. Just by visual inspection, AA’ seems to have higher initial martensite volume fraction

Fig. 11
figure 11

Stress–Strain behavior of two NiTi samples with < 011 > loading orientation and similar initial microstructure

Fig. 12
figure 12

Compressive transformation stress vs temperature for FeMnAlNi [57, 59, 89] and NiTi [96] single crystals

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidharth, R., Mohammed, A.S.K., Abuzaid, W. et al. Unraveling Frequency Effects in Shape Memory Alloys: NiTi and FeMnAlNi. Shap. Mem. Superelasticity 7, 235–249 (2021). https://doi.org/10.1007/s40830-021-00335-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40830-021-00335-0

Keywords

Navigation