Advertisement

Implementation of peridynamic beam and plate formulations in finite element framework

  • Zhenghao Yang
  • Erkan Oterkus
  • Cong Tien Nguyen
  • Selda Oterkus
Open Access
Original Article
  • 16 Downloads

Abstract

Peridynamic (PD) theory is a new continuum mechanics formulation introduced to overcome the limitations of classical continuum mechanics such as predicting crack initiation and propagation, and capturing nonlocal effects. PD theory is based on integro-differential equations and these equations are generally difficult to be solved by using analytical techniques. Therefore, numerical approximations, especially with meshless method, have been widely used. Numerical solution of three-dimensional models is usually computationally expensive and structural idealization can be utilized to reduce the computational time significantly. In this study, two of such structural idealization types are considered, namely Timoshenko beam and Mindlin plate, and their peridynamic formulations are briefly explained. Moreover, the implementation of these formulations in finite element framework is presented. To demonstrate the capability of the present approach, several case studies are considered including beam and plate bending due to transverse loading, buckling analysis and propagation of an initial crack in a plate under bending loading.

Keywords

Peridynamics Beam Plate Fracture Finite element 

Notes

References

  1. 1.
    Abali, B.E., Vollmecke, C., Woodward, B., Kashtalyan, M., Guz, I., Muller, W.H.: Numerical modeling of functionally graded materials using a variational formulation. Contin. Mech. Thermodyn. 24(4–6), 377–390 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Abali, B.E.: Computational Reality: Solving Nonlinear and Coupled Problems in Continuum Mechanics, vol. 55. Springer, New York (2016)MATHGoogle Scholar
  3. 3.
    Abali, B.E., Vollmecke, C., Woodward, B., Kashtalyan, M., Guz, I., Muller, W.H.: Three-dimensional elastic deformation of functionally graded isotropic plates under point loading. Compos. Struct. 118, 367–376 (2014)CrossRefGoogle Scholar
  4. 4.
    Ayatollahi, M.R., Aliha, M.R.M.: Analysis of a new specimen for mixed mode fracture tests on brittle materials. Eng. Fract. Mech. 76, 1563–1573 (2009)CrossRefGoogle Scholar
  5. 5.
    dell’Isola, F., Andreaus, U., Cazzani, A., Perugo, U., Placidi, L., Ruta, G., Scerrato, D.: On a Debated Principle of Lagrange Analytical Mechanics and on Its Multiple Applications, The Complete Works of Gabriola Piola: Vol. I, Chapter 2, Advanced Structured Materials, vol. 38, pp. 371–590 (2014a)Google Scholar
  6. 6.
    dell’Isola, F., Andreaus, U., Placidi, L., Scerrato, D.: About the Fundamental Equations of the Motion of Bodies Whatsoever, As Considered Following the Natural Their Form and Constitution, Memoir of Sir Doctor Gabrio Piola, The Complete Works of Gabrio Piola: Vol. I, Chapter 1, Advanced Structured Materials, vol. 38, pp. 1–370 (2014b)Google Scholar
  7. 7.
    dell’Isola, F., Andreaus, U., Placidi, L.: A Still Topical Contribution of Gabrio Piola to Continuum Mechanics: The Creation of Peri-dynamics, Non-local and Higher Gradient Continuum Mechanics, The Complete Works of Gabrio Piola, Vol. I, Chapter 5, Advanced Structured Materials, vol. 38, pp. 696–750 (2014c)Google Scholar
  8. 8.
    dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics. Non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    dell’isola, F., Placidi, L.: Variational principles are a powerful tool also for formulating field theories. Variational models and methods in solid and fluid mechanics. CISM Courses Lect. 535, 1–15 (2012)MATHGoogle Scholar
  10. 10.
    De Meo, D., Diyaroglu, C., Zhu, N., Oterkus, E., Siddiq, M.A.: Modelling of stress-corrosion cracking by using peridynamics. Int. J. Hydrogen Energy 41(15), 6593–6609 (2016)CrossRefGoogle Scholar
  11. 11.
    Diyaroglu, C., Oterkus, E., Oterkus, S., Madenci, E.: Peridynamics for bending of beams and plates with transverse shear deformation. Int. J. Solids Struct. 69, 152–168 (2015)CrossRefGoogle Scholar
  12. 12.
    Diyaroglu, C., Oterkus, E., Madenci, E., Rabczuk, T., Siddiq, A.: Peridynamic modeling of composite laminates under explosive loading. Compos. Struct. 144, 14–23 (2016)CrossRefGoogle Scholar
  13. 13.
    Diyaroglu, C., Oterkus, E., Oterkus, S.: An Euler–Bernoulli beam formulation in an ordinary state-based peridynamic framework. Math. Mech. Solids (2017).  https://doi.org/10.1177/1081286517728424
  14. 14.
    Eremeyev, V.A., Lebedev, L.P.: Existence theorems in the linear theory of micropolar shells. Zeitschrift fur Angewandte Mathematik und Mechanik 91(6), 468–476 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Farshad, M., Flueler, P.: Investigation of mode III fracture toughness using an anti-clastic plate bending method. Eng. Fract. Mech. 60, 597–603 (1998)CrossRefGoogle Scholar
  16. 16.
    Gerstle, W., Silling, S., Read, D., Tewary, V., Lehoucq, R.: Peridynamic simulation of electromigration. Comput. Mater. Contin. 8(2), 75–92 (2008)Google Scholar
  17. 17.
    Kezmane, A., Chiaia, B., Kumpyak, O., Maksimov, V., Placidi, L.: 3D modeling of reinforced concrete slab with yielding supports subject to impact load. Eur. J. Environ. Civil Eng. 21, 988–1025 (2017)CrossRefGoogle Scholar
  18. 18.
    Kilic, B., Agwai, A., Madenci, : Peridynamic theory for progressive damage prediction in center-cracked composite laminates. Compos. Struct. 90(2), 141–151 (2009)CrossRefGoogle Scholar
  19. 19.
    Kilic, B., Madenci, E.: An adaptive dynamic relaxation method for quasi-static simulations by using peridynamic theory. Theor. Appl. Fract. Mech. 53, 194–204 (2010)CrossRefGoogle Scholar
  20. 20.
    Lekszycki, T., dell’isola, F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. Zeitschrift fur Angewandte Mathematik und Mechanik 92(6), 426–444 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Macek, R.W., Silling, S.A.: Peridynamics via finite element analysis. Finite Elem. Anal. Des. 43(15), 1169–1178 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Madenci, E., Oterkus, E.: Peridynamic Theory and Its Applications. Springer, New York (2014)CrossRefMATHGoogle Scholar
  23. 23.
    Marigo, J.: Constitutive relations in plasticity, damage and fracture mechanics based on a work property. Nucl. Eng. Des. 114(3), 249–272 (1989)CrossRefGoogle Scholar
  24. 24.
    Mikata, Y.: Analytical solutions of peristatic and peridynamic problems for a 1D infinite rod. Int. J. Solids Struct. 49(21), 2887–2897 (2012)CrossRefGoogle Scholar
  25. 25.
    O’Grady, J., Foster, J.: Peridynamic beams: a non-ordinary, state-based model. Int. J. Solids Struct. 51, 3177–3183 (2014a)CrossRefGoogle Scholar
  26. 26.
    O’Grady, J., Foster, J.: Peridynamic plates and flat shells: a non-ordinary, state-based model. Int. J. Solids Struct. 51, 4572–4579 (2014b)CrossRefGoogle Scholar
  27. 27.
    Oterkus, E., Madenci, E.: Peridynamic theory for damage initiation and growth in composite laminate. Key Eng. Mater. 488, 355–358 (2012)Google Scholar
  28. 28.
    Oterkus, S., Madenci, E.: Fully coupled thermomechanical analysis of fiber reinforced composites using peridynamics, In 55th AIAA/ASME/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference-SciTech Forum and Exposition 2014 (2014)Google Scholar
  29. 29.
    Oterkus, S.: Peridynamics for the solution of multiphysics problems. Ph.D. Thesis, The University of Arizona (2015)Google Scholar
  30. 30.
    Placidi, L., dell’isola, F., Ianiro, N., Sciarra, G.: Variational formulation of pre-stressed solid–fluid mixture theory, with an application to wave phenomena. Eur. J. Mech. A Solids 27(4), 582–606 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Placidi, L.: A variational approach for non-linear one-dimensional damage-elasto-plastic second-gradient continuum model. Contin. Mech. Thermodyn. 28, 119–137 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Queiruga, A.F., Moridis, G.: Numerical experiments on the convergence properties of state-based peridynamic laws and influence functions in two-dimensional problems. Comput. Methods Appl. Mech. Eng. 322, 97–122 (2017)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48, 175–209 (2000)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83(17–18), 1526–1535 (2005)CrossRefGoogle Scholar
  35. 35.
    Spagnuolo, M., Barcz, K., Pfaff, A., dell’isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminium printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)CrossRefGoogle Scholar
  36. 36.
    Taylor, M., Steigmann, D.J.: A two-dimensional peridynamic model for thin plates. Math. Mech. Solids 20(8), 998–1010 (2015)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Zhenghao Yang
    • 1
  • Erkan Oterkus
    • 1
  • Cong Tien Nguyen
    • 1
  • Selda Oterkus
    • 1
  1. 1.Department of Naval Architecture, Ocean and Marine EngineeringUniversity of StrathclydeGlasgowUK

Personalised recommendations