Skip to main content

Advertisement

Log in

Modeling micromechanical measurements of depth-varying properties with scanning acoustic microscopy

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Scanning acoustic microscopy (SAM) has been applied to measure the near-surface elastic properties of materials. For many substrates, the near-surface property is not constant but varies with depth. In this paper, we aim to interpret the SAM data from such substrates by modeling the interaction of the focused ultrasonic field with a substrate having a near-surface graded layer. The focused ultrasonic field solutions were represented as spherical harmonic expansions while the substrate solutions were represented as plane wave expansions. The bridging of the two solutions was achieved through the decomposition of the ultrasonic pressure fields in their angular spectra. Parametric studies were performed, which showed that near-surface graded layers exhibit distinctive frequency dependence of their reflectance functions. This behavior is characteristic to the material property gradation profile as well as the extent of the property gradation. The developed model was used to explain the frequency-dependent reflection coefficients measured from an acid-etched dentin substrate. Based on the model calculations, the elastic property variations of the acid-etched dentin near-surface indicate that the topmost part of the etched layer is very soft (3–6 GPa) and transitions to the native dentin through a depth of 27 and 36 microns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katz, J.L., Meunier, A.: Scanning acoustic microscope studies of the elastic properties of osteons and osteon lamellae. J. Biomech. Eng. 115(4B), 543–548 (1993)

    Article  Google Scholar 

  2. Marangos, O., Misra, A., Spencer, P., Bohaty, B., Katz, J.L.: Physico-mechanical properties determination using microscale homotopic measurements: application to sound and caries-affected primary tooth dentin. Acta Biomater. 5(4), 1338–1348 (2009)

    Article  Google Scholar 

  3. Rupin, F., Saïed, A., Dalmas, D., Peyrin, F., Haupert, S., Raum, K., et al.: Assessment of microelastic properties of bone using scanning acoustic microscopy: a face-to-face comparison with nanoindentation. Jpn. J. Appl. Phys. 48(7S), 07GK1 (2009)

    Google Scholar 

  4. Lemons, R., Quate, C.: Acoustic microscope—scanning version. Appl. Phys. Lett. 24(4), 163–165 (1974)

    Article  ADS  Google Scholar 

  5. Briggs, A., Kolosov, O.: Acoustic Microscopy. Oxford University Press, Oxford (2010)

    Google Scholar 

  6. Rosi, G., Placidi, L., Nguyen, V.-H., Naili, S.: Wave propagation across a finite heterogeneous interphase modeled as an interface with material properties. Mech. Res. Commun. 84, 43–48 (2017)

    Article  Google Scholar 

  7. Wieliczka, D.M., Kruger, M., Spencer, P.: Raman imaging of dental adhesive diffusion. Appl. Spectrosc. 51(11), 1593–1596 (1997)

    Article  ADS  Google Scholar 

  8. Marangos, O., Misra, A., Spencer, P., Katz, J.L.: Scanning acoustic microscopy investigation of frequency-dependent reflectance of acid-etched human dentin using homotopic measurements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(3), 585–595 (2011)

    Article  Google Scholar 

  9. Feng, F., Mal, A., Kabo, M., Wang, J.C., Bar-Cohen, Y.: The mechanical and thermal effects of focused ultrasound in a model biological material. J. Acoust. Soc. Am. 117(4), 2347–2355 (2005)

    Article  ADS  Google Scholar 

  10. Sapozhnikov, O.A., Bailey, M.R.: Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid. J. Acoust. Soc. Am. 133(2), 661–676 (2013)

    Article  ADS  Google Scholar 

  11. Maev, R.G.: Acoustic Microscopy: Fundamentals and Applications. Wiley, New York (2008)

    Book  Google Scholar 

  12. Atalar, A.: An angular-spectrum approach to contrast in reflection acoustic microscopy. J. Appl. Phys. 49(10), 5130–5139 (1978)

    Article  ADS  Google Scholar 

  13. Wickramasinghe, H.: Contrast and imaging performance in the scanning acoustic microscope. J. Appl. Phys. 50(2), 664–672 (1979)

    Article  ADS  Google Scholar 

  14. Bertoni, H.L.: Ray-optical evaluation of V(z) in the reflection acoustic microscope. IEEE Trans. Sonics Ultrason. 31(2), 105–116 (1984)

    Article  Google Scholar 

  15. Winkler, J., Davies, J.: Accurate field analysis of the propagation of elastic waves through an acoustic microscope, part I: theory. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(6), 644–656 (1986)

    Article  Google Scholar 

  16. Winkler, J., Davies, J.: Accurate field analysis of the propagation of elastic waves through an acoustic microscope, part II: results. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(6), 657–668 (1986)

    Article  Google Scholar 

  17. Liu, G., Achenbach, J., Kim, J., Li, Z.: A combined finite element method/boundary element method technique for V(z) curves of anisotropic-layer/substrate configurations. J. Acoust. Soc. Am. 92(5), 2734–2740 (1992)

    Article  ADS  Google Scholar 

  18. Kundu, T., Lee, J.-P., Blase, C., Bereiter-Hahn, J.: Acoustic microscope lens modeling and its application in determining biological cell properties from single-and multi-layered cell models. J. Acoust. Soc. Am. 120(3), 1646–1654 (2006)

    Article  ADS  Google Scholar 

  19. Nagy, P.B., Adler, L.: Acoustic material signature from frequency analysis. J. Appl. Phys. 67(8), 3876–3878 (1990)

    Article  ADS  Google Scholar 

  20. Li, Z., Achenbach, J., Kim, J.: Effect of surface discontinuities on V(z) and V(z, x) for the line-focus acoustic microscope. Wave Motion 14(2), 187–203 (1991)

    Article  Google Scholar 

  21. Rebinsky, D.A., Harris, J.G. (eds.): An asymptotic calculation of the acoustic signature of a cracked surface for the line focus scanning acoustic microscope. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences; The Royal Society (1992)

  22. Rebinsky, D.A., Harris, J.G. (eds.): The acoustic signature for a surface-breaking crack produced by a point focus microscope. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences: The Royal Society (1992)

  23. Sommerfeld, A.: Lectures on Theoretical Physics: Optics. Academic Press, New York (1954)

    MATH  Google Scholar 

  24. Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Elsevier, Amsterdam (2013)

    MATH  Google Scholar 

  25. Rayleigh, L.: The Theory of Sound, Vols. I and II. Dover Publications, New York (1945)

    Google Scholar 

  26. Achenbach, J.: Wave Propagation in Elastic Solids. Elsevier, Amsterdam (2012)

    MATH  Google Scholar 

  27. Baker, B.B., Copson, E.T.: The Mathematical Theory of Huygens’ Principle. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  28. Ardebili, V.S., Sinclair, A. (eds.): A new angular spectrum approach for modelling the acoustic microscope response with high attenuation coupling fluids. In: Proceedings of Symposium on Ultrasonics, 1995. IEEE (1995)

  29. Chou, C.-H., Kino, G.: The evaluation of V(z) in a type II reflection microscope. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34(3), 341–345 (1987)

    Article  Google Scholar 

  30. Liang, K.K., Kino, G.S., Khuri-Yakub, B.T.: Material characterization by the inversion of V(z). IEEE Trans Sonics Ultrason. 32(2), 213–224 (1985)

    Article  Google Scholar 

  31. Lucas, B.G., Muir, T.G.: The field of a focusing source. J. Acoust. Soc. Am. 72(4), 1289–1296 (1982)

    Article  ADS  Google Scholar 

  32. Coulouvrat, F.: Continuous field radiated by a geometrically focused transducer: numerical investigation and comparison with an approximate model. J. Acoust. Soc. Am. 94(3), 1663–1675 (1993)

    Article  ADS  Google Scholar 

  33. Keller, J.B., Givoli, D.: Exact non-reflecting boundary conditions. J. Comput. Phys. 82(1), 172–192 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Williams, E.G.: Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography. Academic Press, New York (1999)

    Google Scholar 

  35. Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists International Student Edition. Academic Press, New York (2005)

    MATH  Google Scholar 

  36. Goodman, J.W.: Introduction to Fourier Optics. McGaw-Hill Physical and Quantum Electronics Series. McGraw-Hill Book Co., New York (1968)

    Google Scholar 

  37. Orofino, D.P., Pedersen, P.C.: Efficient angular spectrum decomposition of acoustic sources. I. Theory. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(3), 238–249 (1993)

    Article  Google Scholar 

  38. Stamnes, J.J.: Waves in Focal Regions: Propagation, Diffraction and Focusing of Light, Sound and Water Waves. Routledge, London (2017)

    MATH  Google Scholar 

  39. Zinin, P., Lefeuvre, O., Briggs, A., Zeller, B.D., Cawley, P., Kinloch, A., et al.: Determination of density and elastic constants of a thin phosphoric acid-anodized oxide film by acoustic microscopy. J. Acoust. Soc. Am. 106(5), 2560–2567 (1999)

    Article  ADS  Google Scholar 

  40. Mal, A.: Elastic waves from localized sources in composite laminates. Int. J. Solids Struct. 39(21), 5481–5494 (2002)

    Article  MATH  Google Scholar 

  41. Robins, A.J.: Reflection of plane acoustic waves from a layer of varying density. J. Acoust. Soc. Am. 87(4), 1546–1552 (1990)

    Article  ADS  Google Scholar 

  42. Berezovski, A., Engelbrecht, J., Maugin, G.A.: Numerical simulation of two-dimensional wave propagation in functionally graded materials. Eur. J. Mech. A Solids 22(2), 257–265 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Haïat, G., Naili, S., Grimal, Q., Talmant, M., Desceliers, C., Soize, C.: Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission. J. Acoust. Soc. Am. 125(6), 4043–4052 (2009)

    Article  ADS  Google Scholar 

  44. Vollmann, J., Profunser, D.M., Bryner, J., Dual, J.: Elastodynamic wave propagation in graded materials: simulations, experiments, phenomena, and applications. Ultrasonics 44, e1215–e1221 (2006)

    Article  Google Scholar 

  45. Zhang, Z.J., Paulino, G.H.: Wave propagation and dynamic analysis of smoothly graded heterogeneous continua using graded finite elements. Int. J. Solids Struct. 44(11), 3601–3626 (2007)

    Article  MATH  Google Scholar 

  46. Robins, A.J.: Plane-wave reflection from a solid layer with nonuniform density, sound speed, and shear speed. J. Acoust. Soc. Am. 103(3), 1337–1345 (1998)

    Article  ADS  Google Scholar 

  47. Baron, C., Naili, S.: Propagation of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: application to ultrasound characterization. J. Acoust. Soc. Am. 127(3), 1307–1317 (2010)

    Article  ADS  Google Scholar 

  48. Haskell, N.A.: The dispersion of surface waves on multilayered media. Bull. Seismol. Soc. Am. 43(1), 17–34 (1953)

    MathSciNet  Google Scholar 

  49. Thomson, W.T.: Transmission of elastic waves through a stratified solid medium. J. Appl. Phys. 21(2), 89–93 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Wang, L., Rokhlin, S.: Recursive geometric integrators for wave propagation in a functionally graded multilayered elastic medium. J. Mech. Phys. Solids 52(11), 2473–2506 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Kausel, E., Roësset, J.M.: Stiffness matrices for layered soils. Bull. Seismol. Soc. Am. 71(6), 1743–1761 (1981)

    Google Scholar 

  52. Rokhlin, S., Wang, L.: Stable recursive algorithm for elastic wave propagation in layered anisotropic media: stiffness matrix method. J. Acoust. Soc. Am. 112(3), 822–834 (2002)

    Article  ADS  Google Scholar 

  53. Wang, L., Rokhlin, S.: Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media. Ultrasonics 39(6), 413–424 (2001)

    Article  Google Scholar 

  54. Kundu, T., Mal, A., Weglein, R.: Calculation of the acoustic material signature of a layered solid. J. Acoust. Soc. Am. 77(2), 353–361 (1985)

    Article  ADS  Google Scholar 

  55. Kinney, J., Gladden, J., Marshall, G., Marshall, S., So, J.H., Maynard, J.: Resonant ultrasound spectroscopy measurements of the elastic constants of human dentin. J. Biomech. 37(4), 437–441 (2004)

    Article  Google Scholar 

  56. Eremeyev, V.A.: On effective properties of materials at the nano-and microscales considering surface effects. Acta Mech. 227(1), 29–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Eremeyev, V.A., Rosi, G., Naili, S.: Surface/interfacial anti-plane waves in solids with surface energy. Mech. Res. Commun. 74, 8–13 (2016)

    Article  Google Scholar 

  58. dell’Isola, F., Madeo, A., Placidi, L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. ZAMM J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik 92(1), 52–71 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids 19(5), 555–578 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Rosi, G., Madeo, A., Guyader, J.-L.: Switch between fast and slow Biot compression waves induced by "second gradient microstructure" at material discontinuity surfaces in porous media. Int. J. Solids Struct. 50(10), 1721–1746 (2013)

    Article  Google Scholar 

  61. Dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  62. Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Contin. Mech. Thermodyn. 28(1–2), 215 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Placidi, L., Dell’Isola, F., Ianiro, N., Sciarra, G.: Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena. Eur. J. Mech. A Solids 27(4), 582–606 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Rosi, G., Placidi, L., dell’Isola, F.: "Fast" and "slow" pressure waves electrically induced by nonlinear coupling in biot-type porous medium saturated by a nematic liquid crystal. Zeitschrift für angewandte Mathematik und Physik 68(2), 51 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Misra.

Additional information

Communicated by Francesco dell’Isola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marangos, O., Misra, A. Modeling micromechanical measurements of depth-varying properties with scanning acoustic microscopy. Continuum Mech. Thermodyn. 30, 953–976 (2018). https://doi.org/10.1007/s00161-018-0625-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0625-y

Keywords

Navigation