Skip to main content
Log in

A geometric rationale for invariance, covariance and constitutive relations

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

There are, in each branch of science, statements which, expressed in ambiguous or even incorrect but seemingly friendly manner, were repeated for a long time and eventually became diffusely accepted. Objectivity of physical fields and of their time rates and frame indifference of constitutive relations are among such notions. A geometric reflection on the description of frame changes as spacetime automorphisms, on induced push–pull transformations and on proper physico–mathematical definitions of material, spatial and spacetime tensor fields and of their time-derivatives along the motion, is here carried out with the aim of pointing out essential notions and of unveiling false claims. Theoretical and computational aspects of nonlinear continuum mechanics, and especially those pertaining to constitutive relations, involving material fields and their time rates, gain decisive conceptual and operative improvement from a proper geometric treatment. Outcomes of the geometric analysis are frame covariance of spacetime velocity, material stretching and material spin. A univocal and frame-covariant tool for evaluation of time rates of material fields is provided by the Lie derivative along the motion. The postulate of frame covariance of material fields is assessed to be a natural physical requirement which cannot interfere with the formulation of constitutive laws, with claims of the contrary stemming from an improper imposition of equality in place of equivalence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaremba, S.: Le principe des mouvements relatifs et les équations de la mécanique physique. Bull. Int. Acad. Sci. Cracovie 614, 621 (1903)

    MATH  Google Scholar 

  2. Jaumann, G.: Elektromagnetische Vorgänge in bewegten Medien. Sitzungsber. Akad. Wiss. Wien (IIa) 15, 337 (1906)

    MATH  Google Scholar 

  3. Jaumann, G.: Geschlossenes System physikalischer und chemischer Differentialgesetze. Sitzungsber. Akad. Wiss. Wien (IIa) 120, 385–530 (1911)

  4. Oldroyd, J.G.: On the formulation of rheological equations of state. Proc. R. Soc. Lond. A 200, 523–541 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Sedov, L.I.: Different definitions of the rate of change of a tensor. J. Appl. Math. Mech. 24(3), 579–586 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  6. Prager W.: Introduction to Mechanics of Continua. Ginn & Company, Boston, MA. (German Einführung in die Kontinuumsmechanik, Trans.). Birkhauser, Basel (1961)

  7. Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics. Handbuch der Physik, Band III3. Springer, Berlin (1965), 2nd edn. (1992), 3rd edn. (2004)

  8. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Redwood City, CA (1983)

    MATH  Google Scholar 

  9. Ryskin, G.: Misconception which led to the “material frame-indifference” controversy. Phys. Rev. A 32, 1239 (1985)

    Article  ADS  Google Scholar 

  10. Liu, I.-S.: On Euclidean objectivity and the principle of material frame-indifference. Contin. Mech. Thermodyn. 16, 177–183 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Murdoch, A.I.: Objectivity in classical continuum physics: a rationale for discarding the principle of invariance under superposed rigid body motions in favour of purely objective considerations. Contin. Mech. Thermodyn. 15, 309–320 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Liu, I.-S.: Further remarks on Euclidean objectivity and the principle of material frame-indifference. Contin. Mech. Thermodyn. 17, 125–133 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Murdoch, A.I.: On criticism of the nature of objectivity in classical continuum physics. Contin. Mech. Thermodyn. 17, 135–148 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Frewer, M.: More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech. 202, 213–246 (2009)

    Article  MATH  Google Scholar 

  15. Liu, I.-S., Sampaio, R.: Remarks on material frame-indifference controversy. Acta Mech. 225(2), 331–348 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frewer, M.: Covariance and objectivity in mechanics and turbulence. A revisiting of definitions and applications. arXiv:1611.07002 (2016)

  17. Liu, I.-S., Lee, J.D.: On material objectivity of intermolecular force in molecular dynamics. Acta Mech. 228(2), 731–738 (2017)

    Article  MathSciNet  Google Scholar 

  18. Romano, G., Barretta, R.: Geometric constitutive theory and frame invariance. Int. J. Non-Linear Mech. 51, 75–86 (2013)

    Article  ADS  Google Scholar 

  19. Romano, G.: Geometry & Continuum Mechanics. Short Course in Innsbruck, 24–25 Nov 2014. ISBN-10: 1503172198. http://wpage.unina.it/romano/lecture-slides/

  20. Lee, E.H.: Elastic-plastic deformations at finite strains. ASME J. Appl. Mech. 36(1), 1–6 (1969)

    Article  ADS  MATH  Google Scholar 

  21. Simò, J.C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: continuum formulation, part I. Comput. Methods Appl. Mech. Eng. 66, 199–219 (1988)

    Article  ADS  MATH  Google Scholar 

  22. Lubarda, V.A.: Elastoplasticity Theory. CRC Press, Boca Raton (2002)

    MATH  Google Scholar 

  23. van Dantzig, D.: Zur allgemeinen projektiven Differentialgeometrie I, II. In: Proc. Kon. Akad. Amsterdam 35, 524–534, 535–542 (1932). http://www.dwc.knaw.nl/DL/publications/PU00016251.pdf. http://www.dwc.knaw.nl/DL/publications/PU00016252.pdf

  24. Romano, G., Barretta, R., Diaco, M.: The geometry of nonlinear elasticity. Acta Mech. 225(11), 3199–3235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Svendsen, B., Bertram, A.: On frame-indifference and form-invariance in constitutive theory. Acta Mech. 132, 195–207 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bertram, A., Svendsen, B.: On material objectivity and reduced constitutive equations. Arch. Mech. 53(6), 653–675 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Romano, G.: On Time and Length in Special Relativity. Rend. Acc. Naz. Sc. Let. Arti, in Napoli, May (2014). http://wpage.unina.it/romano/selected-publications/

  28. Lie, M.S., Engel, F.: Theorie der Transformationsgruppen. In: Teubner, B.G., Leipzig, vol. 1–3, 2nd edn (1888-1890-1893) . Chelsea, New York

  29. Dieudonné, J.: Treatise on Analysis, vol I–IV. Academic Press, New York (1969–1974)

  30. Rodrigues, W.A., de Souza, Q.A.G., Bozhkov, Y.: The mathematical structure of Newtonian spacetime: classical dynamics and gravitation. Found. Phys. 25(6), 871–924 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  31. Panicaud, B., Rouhaud, E., Altmeyer, G., Wang, M., Kerner, R., Roos, A., Ameline, O.: Consistent hypo-elastic behavior using the four-dimensional formalism of differential geometry. Acta Mech. 227(3), 651–675 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, M., Panicaud, B., Rouhaud, E., Kerner, R., Roos, A.: Incremental constitutive models for elastoplastic materials undergoing finite deformations by using a four-dimensional formalism. Int. J. Eng. Sci. 106, 199–219 (2016)

    Article  MathSciNet  Google Scholar 

  33. Samelson, H.: Differential forms, the early days; or the stories of Deahna’s Theorem and of Volterra’s theorem. Am. Math. Mon. Math. Assoc. Am. 108(6), 522–530 (2001). https://www.math.toronto.edu/mgualt/wiki/samelson_forms_history.pdf

  34. Petersen, P.: Riemannian Geometry. Springer, New York (1998)

    Book  MATH  Google Scholar 

  35. Romano, G., Barretta, R., Diaco, M.: Geometric continuum mechanics. Meccanica 49(1), 111–133 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Thompson, R.L.: A note on some insights from decoupling the time derivative of an objective tensor. Int. J. Eng. Sci. 82, 22–27 (2014)

    Article  Google Scholar 

  37. Bampi, F., Morro, A.: Objectivity and objective time derivatives in continuum physics. Found. Phys. 10(11–12), 905–920 (1980)

  38. Gurtin, M.E.: An Introduction to Continuum Mechanics. Academic Press, San Diego (1981)

    MATH  Google Scholar 

  39. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  40. Truesdell, C.: A First Course in Rational Continuum Mechanics. Academic Press, New York (1977) (2nd edn., 1991)

  41. Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017)

    Article  MathSciNet  Google Scholar 

  42. Rivlin, R.S.: Material symmetry revisited. GAMM-Mitt. 1(2), 109–126 (2002)

    MathSciNet  MATH  Google Scholar 

  43. Bertram, A., Svendsen, B.: Reply to Rivlin’s material symmetry revisited or much ado about nothing. GAMM-Mitt. 27(1), 88–93 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  45. Truesdell C., Toupin R.: The classical field theories. In: Handbuck der Physik, Band III/1, pp. 226-793 Springer, Berlin (1960)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Romano.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romano, G., Barretta, R. & Diaco, M. A geometric rationale for invariance, covariance and constitutive relations. Continuum Mech. Thermodyn. 30, 175–194 (2018). https://doi.org/10.1007/s00161-017-0595-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0595-5

Keywords

Navigation