Skip to main content
Log in

On spacetime structure, spacetime transformations and material frame-indifference in solid mechanics

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In this work, we provide several insights which are related to the physical origins and the mathematical formulation of the principle of material frame-indifference in solid mechanics. The salient feature of the present approach relies crucially on the concrete understanding that when one models the ambient space as a rigid Euclidean space—one with a constant metric—misses important geometrical information; this information is related to the spacetime structure, the possible spacetime transformations and the spacetime–matter interaction. Upon abandoning this point of view and considering the ambient space as a flat manifold, we can see that material frame-indifference is a spacetime property which follows naturally from a physical postulate, namely that of Leibniz equivalence. We also analyze the connection which exists between material frame-indifference and relativity principles; this analysis vindicates Noll’s initial intuition to call the principle “principle of isotropy of space”. Finally, upon considering the spatial metric as a dynamical object which incorporates the deformation field, we present a formal introduction to the concept of general covariance in a constitutive theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, J.L.: Covariance, invariance, and equivalence: a viewpoint. Gen. Rel. Grav. 2, 161–172 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  2. Dafalias, Y.F.: Objectivity in turbulence under change of reference frame and superposed rigid body motion. J. Eng. Mech. ASCE 137, 699–707 (2011)

    Article  Google Scholar 

  3. Earman, J.: Laws, symmetry and symmetry breaking: Invariance, conservation principles and objectivity. Philos. Sci. 71, 1227–1241 (2004)

    Article  MathSciNet  Google Scholar 

  4. Earman, J., Norton, J.: What price spacetime substantivalism? The hole story. Brit. J. Philos. Sci. 38, 515–525 (1987)

    Article  MathSciNet  Google Scholar 

  5. Edelen, D.G., McLennan, J.A.: Material indifference: a principle or convenience. Int. J. Eng. Sci. 11, 813–817 (1973)

    Article  Google Scholar 

  6. Fock, V.: Three lectures on relativity theory. Rev. Mod. Phys. 29, 325–333 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  7. Frewer, M.: More clarity on the concept of material-frame indifference in classical continuum mechanics. Acta Mech. 202, 213–246 (2009)

    Article  Google Scholar 

  8. Ganghoffer, J.F.: Symmetries in mechanics: from field theories to master responses in the constitutive modeling of materials. In: Ganghoffer, J.F., Mladenov, I. (eds.) Similarity and Symmetry Methods, Applications in Elasticity and Mechanics of Materials, pp. 271–351. Springer, Berlin (2014)

    Google Scholar 

  9. Giusteri, G.G.: Rejection of the principle of material frame indifference. arXiv:1702.01235v1 [physics-class-ph] (2017)

  10. Gotay, M.J., Marsden, J.E.: Stress–energy–momentum tensors and the Belinfante–Rosenfeld formula. Contemp. Math. AMS 132, 367–392 (1992)

    Article  MathSciNet  Google Scholar 

  11. Gratus, J., Obukhov, Y., Tucker, R.V.: Conservation laws and stress–energy–momentum tensors for systems with background fields. arXiv:1206.6704v1 [physics-class-ph] (2012)

  12. Heckl, M., Müller, I.: Frame dependence, entropy, entropy flux and wave speeds in mixtures of gases. Acta Mech. 50, 71–95 (1983)

    Article  ADS  Google Scholar 

  13. Liu, I.-S.: On Euclidean objectivity and the principle of material frame-indifference. Contemp. Mech. Thermodyn. 16, 177–183 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. Liu, I.-S.: Further remarks on Euclidean objectivity and the principle of material frame-indifference. Contemp. Mech. Thermodyn. 17, 125–133 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  15. Liu, I.-S., Sampaio, R.: Remarks on material-frame indifference controversy. Acta Mech. 225, 331–348 (2014)

    Article  MathSciNet  Google Scholar 

  16. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover Publications, New York (1994)

    MATH  Google Scholar 

  17. Müller, I.: On the frame dependence of stress and heat flux. Arch. Ration. Mech. Anal. 45, 241–250 (1972)

    Article  MathSciNet  Google Scholar 

  18. Müller, I.: On the frame dependence of electric current and heat flux in a metal. Acta Mech. 24, 117–128 (1976)

    Article  Google Scholar 

  19. Murdoch, A.E.: Objectivity in classical continuum physics: a rationale for Discarding the ‘principle of invariance under superposed rigid body motions in purely objective considerations. Contemp. Mech. Thermodyn. 15, 309–320 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  20. Murdoch, A.E.: On criticism of the nature of objectivity in classical continuum mechanics. Contemp. Mech. Thermodyn. 17, 135–148 (2005)

    Article  ADS  Google Scholar 

  21. Noll, W.: On material frame-indifference. Research report, No. 95-NA-022. Carnegie Mellon University (1995)

  22. Norton, J.D.: General covariance and the foundations of general relativity: eight decades of dispute. Rep. Prog. Phys. 56, 791–858 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  23. Norton, J.D.: Did Einstein stumble? The debate over general covariance. Erkenntnis 42, 223–245 (1995)

    Article  MathSciNet  Google Scholar 

  24. Panoskaltsis, V.P., Soldatos, D.: Material covariant constitutive laws for continua with internal structure. Acta Mech. 227, 881–898 (2016)

    Article  MathSciNet  Google Scholar 

  25. Panoskaltsis, V.P., Soldatos, D., Triantafyllou, S.P.: The concept of physical metric in rate-independent generalized plasticity. Acta Mech. 221, 49–64 (2011)

    Article  Google Scholar 

  26. Panoskaltsis, V.P., Soldatos, D.: On spatial covariance, second law of thermodynamics and configurational forces in continua. Entropy 16, 3234–3256 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  27. Poltorak, A.: On the ontology of spacetime in a frame of reference. http://Philsci.archive.pitt.edu/1800/ (2004)

  28. Pooley, O.: Substantive general covariance: another decade of dispute. In: Suirez, M., et al. (eds.) EPSA Philosophical Issues in the Sciences: Launch of the European Philosophy of Science Association, pp. 197–209. Springer, Berlin (2010)

    Chapter  Google Scholar 

  29. Romano, G., Barretta, R., Diako, M.: A geometric rationale for invariance, covariance and constitutive relations. Contemp. Mech. Thermodyn. 30, 175–194 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  30. Ryskin, G.: Misconception which led to the "material-frame indifference" controversy. Phys. Rev. A 32, 1239–1240 (1985)

    Article  ADS  Google Scholar 

  31. Simo, J.C., Marsden, J.E.: On the rotated stress tensor and the material version of the Doyle–Ericksen formula. Arch. Ration. Mech. Anal. 86, 213–231 (1984)

    Article  MathSciNet  Google Scholar 

  32. Simo, J.C., Marsden, J.E., Krihnaprasad, P.S.: The Hamiltonian structure of nonlinear elasticity. The convected representations of solids, rods and plates. Arch. Ration. Mech. Anal. 104, 125–183 (1988)

    Article  Google Scholar 

  33. Slawianowski, J.J., Goubowska, B.: Motion of test bodies with internal degrees of freedom in non-Euclidean spaces. Rep. Math. Phys. 65, 379–422 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  34. Stumpf, H., Hoppe, U.: The application of tensor algebra on manifolds to nonlinear continuum mechanics—invited survey article. Z. Angew. Math. Mech. 77, 327–339 (1997)

    Article  MathSciNet  Google Scholar 

  35. Svendsen, B., Bertram, A.: On frame-indifference and form-invariance in constitutive theory. Acta Mech. 132, 195–207 (1999)

    Article  MathSciNet  Google Scholar 

  36. Truesdell, C., Noll, W.: The nonlinear field theories. Handbook der Physik, III/3. Springer, Berlin (1965)

    Google Scholar 

  37. Valanis, K.C.: The concept of physical metric in thermodynamics. Acta. Mech. 113, 169–184 (1995)

    Article  MathSciNet  Google Scholar 

  38. Wigner, E.: Symmetries and Reflections. Indiana University Press, Bloomington (1967)

    Google Scholar 

  39. Woods, L.C.: The bogus axioms of continuum mechanics. IMA Bull. 15, 98–22 (1981)

    MathSciNet  MATH  Google Scholar 

  40. Yavari, A., Marsden, J.E., Ortiz, M.: On spatial and material covariant balance laws in elasticity. J. Math. Phys. 47, 1–53 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Soldatos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatos, D. On spacetime structure, spacetime transformations and material frame-indifference in solid mechanics. Continuum Mech. Thermodyn. 32, 1073–1093 (2020). https://doi.org/10.1007/s00161-019-00811-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00811-0

Keywords

Navigation