Skip to main content
Log in

On constitutive equations for thermoelastic analysis of fiber-reinforced composites with isotropic matrix material

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with developing constitutive equations for the thermoelastic analysis of composites consisting of an isotropic matrix reinforced by independent and inextensible two families of fibers having an arbitrary distribution. The composite medium is assumed to be incompressible, dependent on temperature gradient, and showing linear elastic behavior. The reaction of the composite material subject to external loads is expressed in stress tensor and heat flux vector. The matrix material made of elastic material involving an artificial anisotropy due to fibers reinforcing by arbitrary distributions has been assumed as an isotropic medium. The theory is formulated within the scope of continuum mechanics. As a result of thermodynamic constraints, it has been determined that the stress potential function is dependent on the deformation tensor, the fiber fields vectors and the temperature, while the heat flux vector function is dependent on the deformation tensor, the fiber fields vectors, the temperature and temperature gradient. To determine arguments of the constitutive functionals, findings relating to the theory of invariants have been used as a method because of that isotropy constraint is imposed on the material. The constitutive equations of stress and heat flux vector have been written in terms of different coordinate descriptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nedjar B.: An anisotropic viscoelastic fiber-matrix model at finite strains: continuum formulation and computational aspects. Comput. Meth. Appl. Mech. Eng. 196(9–12), 1745–1756 (2007)

    Article  ADS  MATH  Google Scholar 

  2. Cho J., Fenner J., Werner B., Daniel I.M.: A constitutive model for fiber-reinforced polymer composites. J. Compos. Mater. 44(26), 3133–3150 (2010)

    Article  Google Scholar 

  3. Buryachenko V.A.: Micromechanics of Heterogeneous Materials. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  4. Milton G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  5. Torquato S.: Random Heterogeneous Media. Springer, New York (2002)

    Google Scholar 

  6. Kim J.S., Muliana A.H.: A combined viscoelastic–viscoplastic behavior of particle reinforced composites. Int. J. Solids Struct. 47, 580–594 (2010)

    Article  MATH  Google Scholar 

  7. Karami G., Garnich M.: Micromechanical study of thermoelastic behavior of composites with periodic fiber waviness. Compos. Part B Eng. 36(3), 241–248 (2005)

    Article  Google Scholar 

  8. Aboudi J.: Closed form constitutive equations for metal matrix composites. Int. J. Eng. Sci. 23, 1229–1240 (1987)

    Article  Google Scholar 

  9. Allen D.H., Harris C.E., Groves S.E.: A thermomechanical constitutive theory for elastic composites with distributed damage-i. theoretical development. Int. J. Solids Struct. 23(9), 1301–1318 (1987)

    Article  MATH  Google Scholar 

  10. Ieşan D.: Thermoelasticity of bodies with microstructure and microtemperatures. Int. J. Solids Struct. 44, 8648–8662 (2007)

    Article  MATH  Google Scholar 

  11. Lubarda V.A.: On thermodynamic potentials in linear thermoelasticity. Int. J. Solids Struct. 41(26), 7377–7398 (2004)

    Article  MATH  Google Scholar 

  12. Maugin A.G., Berezovski A.: Material formulation of finite-strain thermoelasticity and applications. J. Therm. Stress. 22(4,5), 421–449 (1999)

    MathSciNet  Google Scholar 

  13. Nazarenko L., Khoroshun L., Müler W.H., Wille R.: Effective thermoelastic properties of discrete-fiber-reinforced materials with transversally-isotropic components. Continuum Mech. Therm. 20(7), 429–458 (2009)

    Article  ADS  MATH  Google Scholar 

  14. Eringen A.C.: A unified theory of thermomechanical materials. Int. J. Eng. Sci. 4, 179–202 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  15. Merodio J.: On constitutive equations for fiber-reinforced nonlinearly viscoelastic solids. Mech. Resear. Comm. 33(6), 764–770 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Merodio J., Rajagopal K.R.: On constitutive equations for anisotropic nonlinearly viscoelastic solids. Math. Mech. Solids 12(2), 131–147 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bustamante R., Merodio J.: Constitutive structure in coupled non-linear electro-elasticity: invariant descriptions and constitutive restrictions. Int. J. Non-Linear Mech. 46(10), 1315–1323 (2011)

    Article  ADS  Google Scholar 

  18. Usal M., Usal M.R., Esendemir Ü.: A continuum formulation for fiber-reinforced viscoelastic composite materials with microstructure part - ii: isotropic matrix material. Sci. Eng. Compos. Mater. 15(3), 235–247 (2008)

    Google Scholar 

  19. Usal M.R., Usal M., Esendemir Ü.: A mathematical model for thermomechanical behavior of arbitrary fiber-reinforced viscoelastic composites—II. Sci. Eng. Compos. Mater. 13(4), 301–311 (2006)

    Google Scholar 

  20. Erdem A.Ü., Usal M., Usal M.R.: A mathematical model for the electro thermomechanical behavior of fiber-reinforced dielectric viscoelastic composites with isotropic matrix material. J. Fac. Eng. Arch. Gazi Univ. 20(3), 321–334 (2005)

    Google Scholar 

  21. Usal M., Usal M.R., Erdem A.Ü.: On magneto-viscoelastic behavior of fiber-reinforced composite materials part-II: isotropic matrix material. Sci. Eng. Compos. Mater. 16(1), 57–71 (2009)

    Google Scholar 

  22. Usal M.R.: A constitutive formulation of arbitrary fiber-reinforced viscoelastic piezoelectric composite materials—II. Inter. J. Non-Lin. Sci. Numer. Simul. 8(2), 275–293 (2007)

    Article  Google Scholar 

  23. Usal M.R.: On constitutive equations for thermoelastic dielectric continuum in terms of invariants. Int. J. Eng. Sci. 49(7), 625–634 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Usal, M.: A constitutive formulation for the linear thermoelastic behavior of arbitrary fiber-reinforced composites. Math. Probl. Eng. 2010, 1–19 (2010). doi:10.1155/2010/404398

  25. Şuhubi E.S.: Continuum Mechanics—Introduction. ITU, Faculty of Arts and Sci. Publication,  Istanbul (1994)

    Google Scholar 

  26. Erdem A.Ü., Usal M.R.: On nonlinear electro-elastic behavior of fiber-reinforced dielectric media. Bull. Tech. Univ.  Istanbul 47(4), 105–135 (1994)

    MATH  Google Scholar 

  27. Spencer A.J.M.: Deformations of Fiber-Reinforced Materials. Clarendon press, Oxford (1972)

    Google Scholar 

  28. Spencer, A.J.M.: Continuum theory of the mechanics of fiber-reinforced composites. In: Spencer, A.J.M. (ed.) Int. Cent. for Mech. Sci. Course Lect., no. 282. Springer, Wien (1984)

  29. Eringen A.C.: Mechanics of Continua. Wiley, New York (1967)

    MATH  Google Scholar 

  30. Spencer A.J.M.: Theory of invariants. In: Eringen, A.C. (ed) Continuum Physics, pp. 239–353. Academic Press, New York (1971)

    Google Scholar 

  31. Eringen, A.C.: Continuum Physics—Mathematics, vol. 1, Academic Press, New York (1971)

  32. Zheng Q.S., Spencer A.J.M.: Tensors which characterize anisotropies. Int. J. Eng. Sci. 31, 679–693 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zheng Q.S.: On transversely isotropic, orthoropic and relative isotropic functions of symmetric tensors, skew-symmetric tensors and vectors. part v: the irreducibility of the representations for three dimensional orthoropic functions and the summary. Int. J. Eng. Sci. 31, 1445–1453 (1993)

    Article  Google Scholar 

  34. Usal, M.R.: A mathematical model for the electro-thermomechanical behaviour of fiber-reinforced elastic dielectric media. PhD. thesis, Erciyes University, Kayseri, Turkey (1994)

  35. Usal, M.: A mathematical model for a Biological construction element. PhD thesis, Süleyman Demirel University, Isparta, Turkey (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melek Usal.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usal, M., Usal, M.R. & Esendemir, Ü. On constitutive equations for thermoelastic analysis of fiber-reinforced composites with isotropic matrix material. Continuum Mech. Thermodyn. 25, 77–88 (2013). https://doi.org/10.1007/s00161-012-0251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-012-0251-z

Keywords

Navigation