Skip to main content
Log in

Effective thermoelastic properties of discrete-fiber reinforced materials with transversally-isotropic components

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In the present paper, we will illustrate the application of the method of conditional moments by constructing the algorithm for determination of the effective elastic properties of composites from the given elastic constants of the components and geometrical parameters of inclusions. A special case of two-component matrix composite with randomly distributed unidirectional spheroidal inclusions is considered. To this end it is assumed that the components of the composite show transversally isotropic symmetry of thermoelastic properties and that the axes of symmetry of the thermoelastic properties of the matrix and inclusions coincide with the coordinate axis x 3. As a numerical example a composite based on carbon inclusions and epoxide matrix is investigated. The dependencies of Young’s moduli, Poisson’s ratios and shear modulus from the concentration of inclusions and for certain values which characterize the shape of inclusions are analyzed. The results are compared and discussed in context with other theoretical predictions and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choy C.L., Leung W.P., Kowk K.W., Lau F.P.: Elastic moduli and thermal conductivity of injectionmolded short fiber reinforced thermoplastics. Polym. Compos. 13, 69–80 (1992)

    Article  Google Scholar 

  2. Christensen R.M.: Mechanics of composite materials, pp. 325. Wiley-Interscience Publication, New York (1979)

    Google Scholar 

  3. Christensen R.M.: A critical evaluation for a class of micro-mechanics models. J. Mech. Phys. Solids 38(3), 379–404 (1990)

    Article  Google Scholar 

  4. Gnedenko, B.V., Belyaev, U.K., Solovyev, A.D.: Mathematical Methods in Reliability Theory, p. 524. Nauka, Moscow (1965) [in Russian]

  5. Gnedenko, B.V.: Course of Probability Theory, p. 448. Nauka, Moscow (1988) [in Russian]

  6. Kachanov M., Sevostianov I., Shafiro B.: Explicit cross-property correlations for porous materials with anisotropic microstructures. J. Mech. Phys. Solids 49, 1–25 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kanaun S.K., Levin V.M.: Effective field method in mechanics of matrix composite materials. In: Markov, K.Z. (eds) Recent Advances in Mathematical Modelling of Composite Materials, pp. 1–58. World Scientific, Singapore (1994)

    Google Scholar 

  8. Khoroshun L.P.: Methods of random functions in determining the macroscopic properties of microheterogeneous media. [in Russian] Prikl. Mech. 14(2), 3–17 (1978)

    MathSciNet  Google Scholar 

  9. Khoroshun L.P., Leshchenko P.V., Nazarenko L.V.: Effective thermoelastic constants of discretely-fibrous composites with anisotropic components. Int. Appl. Mech. 24(10), 955–961 (1988)

    MATH  Google Scholar 

  10. Khoroshun, L.P., Maslov, B.P., Leshchenko, P.V.: Prediction of effective properties of piezo-composites, p. 206. Naukova Dumka. Kiev (1989) [in Russian]

  11. Khoroshun, L.P., Maslov, B.P., Shikula, E.N., Nazarenko, L.V.: Statistical Mechanics and Effective Properties of Materials, p. 390. Naukova Dumka. Kiev (1993) [in Russian]

  12. Kushch V., Sevostianov I.: Effective elastic moduli tensor of particulate composite with transversely isotropic phases. Int. J. Solid Struct. 41, 885–906 (2004)

    Article  MATH  Google Scholar 

  13. Markov K.Z.: Elementary micromechanics of heterogeneous media. In: Markov, K.Z., Preziozi, L. (eds) Heterogeneous Media: Micromechanics Modeling Methods and Simulations, pp. 1–162. Birkhauser, Boston (2000)

    Google Scholar 

  14. Milton G.W., Kohn R.V.: Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids 36(5), 597–629 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Milton G.W.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  16. Mura T.: Micromechanics of defects in solids, pp. 587. Martinus Nijhoff Publishers, Dortrecht (1987)

    Google Scholar 

  17. Ponte Castaneda P.: The effective mechanical properties of nonlinear isotropic solids. J. Mech. Phys. Solids 39(1), 45–71 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ponte Castaneda P.: Exact second-order estimates for the effective mechanical properties of nonlinear composite materials. J. Mech. Phys. Solids 44(6), 827–862 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ponte Castaneda P., Suquet P.: Nonlinear composites. Adv. Appl. Mech. 34, 171–302 (1998)

    Article  Google Scholar 

  20. Sanchez-Palencia E.: Non-Homogeneous Media and Vibration Theory. Springer, Berlin (1980)

    MATH  Google Scholar 

  21. Sevostianov I., Kachanov M.: Explicit cross-property correlations for anisotropic two-phase composite materials. J. Mech. Phys. Solids 50, 253–282 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sevostianov I.: Explicit relations between elastic and conductive properties of a material containing annular cracks. Philos. Trans. R. Soc. Lond. A361, 987–999 (2003)

    MathSciNet  Google Scholar 

  23. Sevostianov I., Yilmaz N., Kushch V., Levin V.: Effective elastic properties of matrix composites with transversely-isotropic phases. Int. J. Solids Struct. 42, 455–476 (2005)

    Article  MATH  Google Scholar 

  24. Sevostianov I., Kachanov M.: Explicit cross-property correlations for composites with anisotropic inhomogeneities. J. Mech. Phys. Solids 55, 2181–2205 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Torquato S.: Random Heterogeneous materials: Microstructure and Macroscopic properties. Springer, Berlin (2002)

    MATH  Google Scholar 

  26. Walpole L.J.: Elastic behaviour of composite-materials—theoretical foundations. Adv. Appl. Mech. 21, 169–242 (1981)

    Article  MATH  Google Scholar 

  27. Willis J.R.: Bounds and self-consistent estimates for the overall properties of anisotropic composites. J. Mech. Phys. Solids 25(2), 185–202 (1977)

    Article  MATH  Google Scholar 

  28. Willis J.R.: The overall elastic response of composite Materials. J. Appl. Mech. 50(4B), 1202–1209 (1983)

    Article  MATH  Google Scholar 

  29. Willis, J.R.: In mechanics of solids. The Rodney Hill 60th Anniversary Volume, pp. 653–686. Pergamon Press, Oxford (1982)

  30. Willis, J.R.: Micromechanics and Inhomogeneity. The Toshio Mura Anniversary Volume, p. 581. Springer, New York (1989)

  31. Withers P.J.: The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials. Philos. Mag. A59, 759–781 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang H. Müller.

Additional information

Communicated by V. Berdichevsky

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazarenko, L., Khoroshun, L., Müller, W.H. et al. Effective thermoelastic properties of discrete-fiber reinforced materials with transversally-isotropic components. Continuum Mech. Thermodyn. 20, 429–458 (2009). https://doi.org/10.1007/s00161-009-0092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-009-0092-6

Keywords

PACS

Navigation