Skip to main content
Log in

A constitutive model for micro-cracked bodies with growing inclusions

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A model of micro-cracked bodies having rigid inclusions growing in their pores is proposed, based on the theories of generalized continua. We first use the balance equations of an existing model of micro-cracked bodies, and we then perform a multiscale description in order to determine constitutive laws that account for the growth of the inclusions. We call macroscopic, the description in which the material is considered as a continuum with microstructure, whereas we refer to microscopic scale when one crack is observed at a closer view. We finally use equivalences between both descriptions in order to write the constitutive laws in terms of variables that are characteristic of (i) the geometry of the crack field and (ii) the growth of the inclusions. Such an approach can find, for instance, application in the modeling of expansion due to delayed ettringite formation: we perform numerical simulations using mechanical and geometrical parameters that are characteristic of high strength sulfoaluminate concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alaoui, A., Féraille, A., Guyen, V.H.N., Desbois, T., Dimassi, A., Iraqi, L., Steckmeyer, A.: Le clinker sulfo-alumineux. Tech. rep., ENPC-LCPC (2007)

  2. Beretka J., Marroccoli M., Sherman N., Valenti G.: The influence of \({{C_4A_3\bar{S}}}\) content and W/S ratio on the performance of calcium sulfoaluminate-based cements. Cem. Conc. Res. 26(11), 1673–1681 (1996)

    Article  Google Scholar 

  3. Bongué Boma, M.: Modélisation de la fissuration pour l’évaluation de la perte d’étanchéité des structures en béton armé sous chargements mécaniques. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées (2007)

  4. Bongué-Boma M., Brocato M.: Liquids with vapour bubbles. Comp. Math. Appl. 55(2), 268–284 (2008)

    Article  MATH  Google Scholar 

  5. Bongué Boma M., Brocato M.: A continuum model of micro-cracks in concrete. Cont. Mech. Therm. 22(2), 137–161 (2009)

    Article  Google Scholar 

  6. Bui H.D.: Mécanique de la Rupture Fragile. Masson, Paris (1978)

    Google Scholar 

  7. Capriz G.: Continua with Microstructure. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  8. Desbois, T.: Stabilité et durabilité des hydrates du système clinker sulfoalumineux-gypse. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées (2009)

  9. Dron, R., Brivot, F.: Le gonflement ettringitique. Tech. rep., Service de chimie Laboratoire central des Ponts et Chaussées (1989)

  10. Ekolu S.O., Thomas M.D.A., Hooton R.D.: Implications of pre-formed microcracking in relation to the theories of DEF mechanism. Cem. Conc. Res. 37(2), 161–165 (2007)

    Article  Google Scholar 

  11. Fu Y., Beaudoin J.J.: Microcracking as a precursor to delayed ettringite formation in cement systems. Cem. Conc. Res. 26(10), 1493–1498 (1999)

    Article  Google Scholar 

  12. Kasselouri V., Tsakiridis P.: A study on the hydratation products of a non-expansive sulfoaluminate cement. Cem. Conc. Res. 25(8), 1726–1736 (1995)

    Article  Google Scholar 

  13. Maiti M., Das B., Palit S.S.: Somiglianas method applied to plane problems of elastic half spaces. J. Elast. 6(4), 429–439 (1976)

    Article  MATH  Google Scholar 

  14. Maiti M.: On the extension of a crack due to non-uniform internal pressure. Int. J. Fract. 14(1), 85–89 (1978)

    Article  Google Scholar 

  15. Maiti M.: On the extension of a crack due to rigid inclusions. Int. J. Fract. 15(4), 389–393 (1979)

    Google Scholar 

  16. Odler I.: Cements Containing Calcium Sulfoaluminate, Special Inorganic Cement. E & FN Spon, London (2000)

    Google Scholar 

  17. Péra J., Ambroise J.: New application of calcium sulfoaluminate cement. Cem. Conc. Res. 34(4), 671–676 (2004)

    Article  Google Scholar 

  18. Stark, J., Bollmann, K.: Delayed ettringite formation in concrete. In: Nordic concrete research meeting, Reykjavik, Island, pp. 4–28 (1999)

  19. Taylor H., Famy C., Scrivener K.: Delayed ettringite formation. Cem. Conc. Res. 31, 683–693 (2001)

    Article  Google Scholar 

  20. Thomas M., Folliard K., Drimalas T., Ramlochan T.: Diagnosing delayed ettringite formation in concrete structures. Cem. Conc. Res. 38(6), 841–847 (2008)

    Article  Google Scholar 

  21. Zhang Z., Glasser F.: Hydration of calcium sulfoaluminate cement at less than 24 h. Adv. Cem. Res 14(4), 141–155 (2002)

    Article  Google Scholar 

  22. Zhou Q., Milestone N., Hayes M.: An alternative to portland cement for waste encapsulation—the calcium sulfoaluminate cement system. J. Haz. Mat. 136, 120–129 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malika Bongué Boma.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bongué Boma, M., Alaoui, A. A constitutive model for micro-cracked bodies with growing inclusions. Continuum Mech. Thermodyn. 24, 49–61 (2012). https://doi.org/10.1007/s00161-011-0212-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-011-0212-y

Keywords

Navigation