Skip to main content
Log in

Distributed-order fractional wave equation on a finite domain: creep and forced oscillations of a rod

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We study waves in a rod of finite length with a viscoelastic constitutive equation of distributed fractional order type for the special choice of weight functions. Prescribing boundary conditions on displacement and stress, we obtain, as special solutions, cases corresponding to creep and forced oscillations. In solving system of differential and integro-differential equations, we use the Laplace transformation in the time domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atanackovic T.M.: A generalized model for the uniaxial isothermal deformation of a viscoelastic body. Acta Mech. 159, 77–86 (2002)

    Article  MATH  Google Scholar 

  2. Atanackovic T.M.: A modified Zener model of a viscoelastic body. Continuum Mech. Thermodyn. 14, 137–148 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Atanackovic T.M.: On a distributed derivative model of a viscoelastic body. C. R. Mecanique 331, 687–692 (2003)

    Article  ADS  MATH  Google Scholar 

  4. Atanackovic T.M., Budincevic M., Pilipovic S.: On a fractional distributed-order oscillator. J. Phys. A Math. Gen. 38, 6703–6713 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Atanackovic T.M., Oparnica L., Pilipovic S.: Distributional framework for solving fractional differential equations. Integr. Transf. Spec. F 20, 215–222 (2009)

    Article  MathSciNet  Google Scholar 

  6. Atanackovic T.M., Pilipovic S.: On a class of equations arising in linear viscoelasticity theory. Z. Angew. Math. Mech. 85, 748–754 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Atanackovic T.M., Pilipovic S., Zorica D.: Time distributed order diffusion-wave equation. I. Voltera type equation. Proc. R. Soc. A 465, 1869–1891 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Atanackovic T.M., Pilipovic S., Zorica D.: Time distributed order diffusion-wave equation. II. Applications of the Laplace and Fourier transformations. Proc. R. Soc. A 465, 1893–1917 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod. Preprint available at arXiv:1005.3379v1

  10. Bagley R.L., Torvik P.J.: On the fractional calculus model of viscoelastic behavior. J. Rheol. 30, 133–155 (1986)

    Article  ADS  MATH  Google Scholar 

  11. Drozdov A.D.: Viscoelastic structures. Academic Press, London (1998)

    MATH  Google Scholar 

  12. Fabrizio, M., Morro, A.: Mathematical Problems in Linear Viscoelasticity. SIAM Studies in Applied Mathematics, vol. 12. Philadelphia (1992)

  13. Grahovac N.M., Žigić M.M.: Modelling of the hamstring muscle group by use of fractional derivatives. Comput. Math. Appl. 59, 1695–1700 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hanyga A.: Fractional-order relaxation laws in non-linear viscoelasticity. Continuum Mech. Thermodyn. 19, 25–36 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Hanyga A., Seredynska M.: Hamiltonian and Lagrangian theory of viscoelasticity. Continuum Mech. Thermodyn. 19, 475–492 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Hartley T.T., Lorenzo C.F.: Fractional-order system identification based on continuous order-distributions. Signal Process 83, 2287–2300 (2003)

    Article  MATH  Google Scholar 

  17. Heymans N.: Constitutive equations for polymer viscoelasticity derived from hierarchical models in cases of failure of time–temperature superposition. Signal Process 83, 2345–2357 (2003)

    Article  MATH  Google Scholar 

  18. Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  19. Lion A.: On the thermodynamics of fractional damping elements. Continuum Mech. Thermodyn. 9, 83–96 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Liu J.G., Xu Y.M.: Higher-order fractional constitutive equations of viscoelastic materials involving three different parameters and their relaxation and creep functions. Mech. Time-Depend. Mater. 10, 263–279 (2006)

    Article  ADS  Google Scholar 

  21. Oldham K.B., Spanier J.: The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, London (1974)

    MATH  Google Scholar 

  22. Podlubny I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  23. Rossikhin Y.A., Shitikova M.V.: Analysis of dynamic behaviour of viscoelastic rods whose rheological models contain fractional derivatives of two different orders. Z. Angew. Math. Mech. 81, 363–376 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rossikhin Y.A., Shitikova M.V.: A new method for solving dynamic problems of fractional derivative viscoelasticity. Int. J. Eng. Sci. 39, 149–176 (2001)

    Article  Google Scholar 

  25. Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives. Gordon and Breach, Amsterdam (1993)

    MATH  Google Scholar 

  26. Schiessel H., Friedrich C., Blumen A.: Applications to problems in polymer physics and rheology. In: Hilfer, R. (ed.) Applications of fractional calculus in physics, World Scientific, Singapore (2000)

    Google Scholar 

  27. Vladimirov V.S.: Equations of Mathematical Physics. Mir Publishers, Moscow (1984)

    Google Scholar 

  28. Welch S.W.J., Rorrer R.A.L., Duren R.G. Jr.: Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials. Mech. Time-Depend. Mater. 3, 279–303 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dusan Zorica.

Additional information

Communicated by Stefan Seelecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atanackovic, T.M., Pilipovic, S. & Zorica, D. Distributed-order fractional wave equation on a finite domain: creep and forced oscillations of a rod. Continuum Mech. Thermodyn. 23, 305–318 (2011). https://doi.org/10.1007/s00161-010-0177-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-010-0177-2

Keywords

Navigation