Skip to main content

Advertisement

Log in

Quasistatic propagation of steps along a phase boundary

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We study quasistatic propagation of steps along a phase boundary in a two-dimensional lattice model of martensitic phase transitions. For analytical simplicity, the formulation is restricted to antiplane shear deformation of a cubic lattice with bi-stable interactions along one component of shear strain and harmonic interactions along the other. Energy landscapes connecting equilibrium configurations with periodic and non-periodic arrangements of steps are constructed, and the energy barriers separating metastable states are calculated. We show that a sequential one-by-one step propagation along a phase boundary requires smaller energy barriers than simultaneous motion of several steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bray D., Howe J. (1996). High-resolution transmission electron microscopy investigation of the face-centered cubic/hexagonal close-packed martensite transformation in Co-31.8 Wt Pct Ni alloy: Part I. Plate interfaces and growth ledges. Metall. Mat. Trans. A 27: 3362–3370

    Article  Google Scholar 

  2. Cahn J.W., Mallet-Paret J., Vleck E.S.V. (1998). Traveling wave solutions for systems of odes on a two-dimensional spatial lattice. SIAM J. Appl. Math. 59(2): 455–493

    Article  Google Scholar 

  3. Celli V., Flytzanis N. (1970). Motion of a screw dislocation in a crystal. J. Appl. Phys. 41(11): 4443–4447

    Article  Google Scholar 

  4. Duffin R.J. (1953). Discrete potential theory. Duke Math. J. 20: 233–251

    Article  MATH  MathSciNet  Google Scholar 

  5. Fedelich B., Zanzotto G. (1992). Hysteresis in discrete systems of possibly interacting elements with a two well energy. J. Nonlinear Sci. 2: 319–342

    Article  MATH  MathSciNet  Google Scholar 

  6. Hirth J. (1994). Ledges and dislocations in phase transformations. Metall. Mat. Trans. A 25: 1885–1894

    Article  Google Scholar 

  7. Hirth J.P., Lothe J. (1982). Theory of Dislocations. Wiley, New York

    Google Scholar 

  8. Hobart R. (1962). A solution to the Frenkel–Kontorova dislocation model. J. Appl. Phys. 33(1): 60–62

    Article  MathSciNet  Google Scholar 

  9. Hobart R. (1965). Peierls-barrier minima. J. Appl. Phys. 36(6): 1948–1952

    Article  Google Scholar 

  10. Hobart R. (1965). Peierls stress dependence on dislocation width. J. Appl. Phys. 36(6): 1944–1948

    Article  Google Scholar 

  11. Hobart R. (1966). Peierls-barrier analysis. J. Appl. Phys. 37(9): 3572–3576

    Article  Google Scholar 

  12. Maradudin A.A. (1958). Screw dislocations and discrete elastic theory. J. Phys. Chem. Solids 9(1): 1–20

    Article  MathSciNet  Google Scholar 

  13. Truskinovsky L., Vainchtein A. (2003). Peierls-Nabarro landscape for martensitic phase transitions. Phys. Rev. B 67: 172–103

    Article  Google Scholar 

  14. Zhen, Y., Vainchtein, A.: Dynamics of steps along a martensitic phase boundary I: Semi-analytical solution. J. Mech. Phys. Solids (2007). Published online, doi:10.1016/j.jmps.2007.05.017

  15. Zhen, Y., Vainchtein, A.: Dynamics of steps along a martensitic phase boundary II: Numerical simulations. J. Mech. Phys. Solids (2007). Published online, doi:10.1016/j.jmps.2007.05.018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basant Lal Sharma.

Additional information

Communicated by R. Abeyaratne

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, B.L., Vainchtein, A. Quasistatic propagation of steps along a phase boundary. Continuum Mech. Thermodyn. 19, 347–377 (2007). https://doi.org/10.1007/s00161-007-0059-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-007-0059-4

Keywords

PACS

Navigation