Skip to main content
Log in

Fractional-order relaxation laws in non-linear viscoelasticity

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Viscoelastic constitutive equations are constructed by assuming that the stress is a nonlinear function of the current strain and of a set of internal variables satisfying relaxation equations of fractional order. The dependence of the relaxation equations on the strain can also be nonlinear. The resulting constitutive equations are examined as mapping between appropriate Sobolev spaces. The proposed formulation is easier to implement numerically than history-based formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christensen R.M. (1971). Theory of Viscoelasticity: An introduction. Academic Press, New York

    Google Scholar 

  2. Simo J.C., Hughes T.J.R. (1998). Computational Inelasticity. Springer, New York

    MATH  Google Scholar 

  3. Coleman B.D., Gurtin M. (1967). Thermodynamics with internal state variables. J. Chem. Phys. 47: 597–613

    Article  Google Scholar 

  4. Saut J.C., Joseph D.D. (1983). Fading memory. Arch Rat. Mech. Anal. 81: 53–95

    Article  MATH  MathSciNet  Google Scholar 

  5. Kelbert M.Y., Chaban I.Y. (1986). Relaxation and propagation of pulses in fluids (Izv Ak. Nauk, ser). Mech. Fluids Gases 5: 153–160

    Google Scholar 

  6. Gripenberg G., Londen S.O., Staffans O.J. (1990). Volterra Integral and Functional Equations. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  7. Kohlrausch, F.: Über die elastische Nachwirkung bei der Torsion, Poggendorfer Annalen (Annalen der Physik und Chemie Lpzg) 119, 337–568 (1863)

  8. Friedrich C. (1991). Relaxation and retardation function of the Maxwell model with fractional derivatives. Rheol. Acta 30: 151–158

    Article  Google Scholar 

  9. Bagley R.L., Torvik P.J. (1986). On the fractional calculus model of viscoelastic behavior. J. Rheol. 30: 133–155

    Article  MATH  Google Scholar 

  10. Renardy M. (1982). Some remarks on the propagation and non-propagation of discontinuities in linearly viscoelastic liquids. Rheol. Acta 21: 251–254

    Article  MATH  MathSciNet  Google Scholar 

  11. Hanyga A., Seredyńska M. (1999). Asymptotic ray theory in poro- and viscoelastic media. Wave Motion 30: 175–195

    Article  MATH  MathSciNet  Google Scholar 

  12. Hanyga A., Seredyńska M. (2002). Asymptotic wavefront expansions in hereditary media with singular memory kernels. Quart. Appl. Math. LX: 213–244

    Google Scholar 

  13. Hanyga A. (2003). Well-posedness and regularity for a class of linear thermoviscoelastic materials. Proc. R. Soc. Lond. A 459: 2281–2296

    MATH  MathSciNet  Google Scholar 

  14. Gripenberg G. (2001). Non-smoothing in a single conservation law with memory. Elect. J. Diff. Equ. 2001(08): 1–8

    MathSciNet  Google Scholar 

  15. Gripenberg G., Londen S.-O. (1995). Fractional derivatives and smoothing in nonlinear conservation laws. Diff. Integr. Equ. 8: 1961–1976

    MATH  MathSciNet  Google Scholar 

  16. Cockburn B., Gripenberg G., Londen S.-O. (1996). On convergence to entropy solutions of a single conservation law. J. Diff. Eqn. 128: 206–251

    Article  MATH  MathSciNet  Google Scholar 

  17. Chen, P.J.: Growth and Decay of Waves in Solids, vol. VIa/3 of Handbuch der Physik, pp 303–402. Springer, Berlin (1973)

  18. Hanyga, A.: Regularity of solutions of nonlinear problems with singular memory. In: 2nd Canadian Conference on Nonlinear Solid Mechanics, Simon Frazer University, Vancouver (2002)

  19. Enelund M., Mähler L., Runesson K., Josefson B.L. (1999). Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws. Int. J. Solids Struct. 36: 2417–2442

    Article  MATH  Google Scholar 

  20. Hanyga A. (2003). An anisotropic Cole-Cole viscoelastic model of seismic attenuation. J. Comput. Acoustics 11: 75–90

    Article  MathSciNet  Google Scholar 

  21. Miller K.S., Ross B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York

    MATH  Google Scholar 

  22. Podlubny I. (1998). Fractional Differential Equations. Academic Press, San Diego

    Google Scholar 

  23. Soula, M., Chevalier, Y.: La dérivee fractionnaire en rhéologie des polymères—Application aux comportements élastiques et viscoélastiques linéaires et non-linéaires des élastomères. In: ESAIM: Proceedings Fractional Differential Systems: Models, Methods and Applications, vol. 5, pp 193–204 (1998). URL http://www.emath.fr/proc/Vol5

  24. Hanyga A. (2001). Wave propagation in media with singular memory. Math. Comput. Mech. 34: 1399–1422

    Article  MATH  MathSciNet  Google Scholar 

  25. Atanackovic T.M. (2001). A modified Zener model of viscoelastic body. Contin. Mech. Thermodyn. 14: 137–148

    Article  MathSciNet  Google Scholar 

  26. Adolfsson K., Enelund M. (2003). Fractional derivative viscoelasticity at large deformations. Nonlinear Dyn. 33: 301–321

    Article  MATH  MathSciNet  Google Scholar 

  27. Palade L.I., Attané P., Huilgol R.R., Mena B. (1999). Anomalous stability behavior of a properly invariant constitutive equations which generalises fractional derivative models. Int. J. Eng. Sci. 37: 315–329

    Article  Google Scholar 

  28. Freed A., Diethelm K., Luchko Y. (2002). Fractional-order viscoelasticity (FOV): constitutive development using the fractional calculus: first annual report. Tech. Rep. NASA/TM-2002-211914, NASA

    Google Scholar 

  29. White J.L., Metzner A.B. (1963). Development of constitutive equations for polymeric melts and solutions. J. Appl. Polym. Sci. 7: 1867–1889

    Article  Google Scholar 

  30. Wagner M.H., Laun H.M. (1978). Nonlinear shear creep and constrained elastic recovery of an LDPE melt. Rheol. Acta 17: 138–148

    Article  Google Scholar 

  31. Larson R.G. (1988). Constitutive Laws for Polymer Melts and Solutions. Birkhäuser, Boston

    Google Scholar 

  32. Schapery R.A. (1966). An engineering theory of nonlinear viscoelasticity with applications. Int. J. Solids Struct. 2: 407–425

    Article  Google Scholar 

  33. Schapery R.A. (1969). On the characterization of nonlinear viscoelastic materials. Polym. Eng. Sci. 9: 295–310

    Article  Google Scholar 

  34. Valanis K.C., Landel R.F. (1967). The strain-energy function of a hyperelastic material in terms of the extension ratios. J. Appl. Phys. 38: 2997–3002

    Article  Google Scholar 

  35. Green A.E., Rivlin R.S. (1957). The mechanics of nonlinear materials with memory. 1. Arch. Rat. Mech. Anal. 1: 1–21

    MATH  MathSciNet  Google Scholar 

  36. Hanyga, A., Seredyńska, M.: Multiple-integral viscoelastic constitutive equations. J. Nonlinear Mech. (2006). doi:10.1016/j.ijnonlinmec.2007.02.2003

  37. Hanyga, A.: An anisotropic Cole-Cole model of seismic attenuation. In: Shang, E.-C., Li, Q., Gao T.F. (Eds.), Theoretical and Computational Acoustics 2001, pp 319–334, World-Scientific, Singapore (2002). In: Proceedings of the 5th International Conference on Computational and Theoretical Acoustics, Beijing, 21-25 May 2001

  38. Carcione J.M., Cavallini F. (1994). A rheological model for anelastic anisotropic media with applications to seismic wave propagation. Geophys. J. Int. 119: 338–348

    Article  Google Scholar 

  39. Day S.M., Minster J.B. (1984). Numerical simulation of wavefields using a Padé approximant method. Geophys. J. R. Astr. Soc. 78: 105–118

    MATH  Google Scholar 

  40. Carcione J.M., Kosloff D., Kosloff R. (1998). Wave propagation simulation in a linear viscoacoustic medium. Geophys. J. R. Astr. Soc. 93: 393–407

    Google Scholar 

  41. Cole K.S., Cole R.H. (1941). Dispersion and absorption in dielectrics, I: Alternating current characteristics. J. Chem. Phys. 9: 341–351

    Article  Google Scholar 

  42. Torvik P.J., Bagley R.L. (1983). On the appearance of the fractional derivative in the behavior of real material. J. Appl. Mech. 51: 294–298

    Article  Google Scholar 

  43. Batzle M., Hofmann R., Han D.-H., Castagna J. (2001). Fluids and frequency dependent seismic velocity of rocks. Lead. Edge 20: 168–171

    Article  Google Scholar 

  44. Soula M., Vinh T., Chevalier Y. (1997). Transient responses of polymers and elastomers deduced from harmonic responses. J. Sound Vibration 205: 185–203

    Article  MathSciNet  Google Scholar 

  45. Friedrich C., Braun H. (1992). Generalized Cole-Cole behavior and its rheological relevance. Rheol. Acta 31: 309–322

    Article  Google Scholar 

  46. Bagley R.L., Torvik P.J. (1983). Fractional calculus–A different approach to the analysis of viscoelastically damped structures. AIAA J. 21: 741–748

    MATH  Google Scholar 

  47. Widder D.V. (1946). The Laplace Transform. Princeton University Press, Princeton

    MATH  Google Scholar 

  48. Doetsch G. (1958). Einführung in Theorie und Anwendung der Laplace Transformation. Birkhäuser Verlag, Basel

    MATH  Google Scholar 

  49. Eldred B.L., Baker W.P., Palazzotto A.N. (1995). Kelvin-Voigt versus fractional derivative model as constitutive relation for viscoelastic materials. AIAA J. 33: 547–550

    MATH  Google Scholar 

  50. Samko S.G., Kilbas A.A., Marichev O.I. (1993). Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam

    MATH  Google Scholar 

  51. Gorenflo, R.: Fractional Calculus: Some Numerical methods, Springer, Wien, 1997, CISM Courses and Lectures, vol. 38

  52. Lubich C. (1986). Discretized fractional calculus. SIAM J. Math. Anal. 17: 704–719

    Article  MATH  MathSciNet  Google Scholar 

  53. Lubich C. (1988). Convolution quadrature and discretized fractional calculus, I. Numer. Math. 52: 129–145

    Article  MATH  MathSciNet  Google Scholar 

  54. Lubich C. (1988). Convolution quadrature and discretized fractional calculus, II. Numer. Math. 52: 413–425

    Article  MATH  MathSciNet  Google Scholar 

  55. Hanyga A., Lu J.-F. (2005). Wave field simulation for heterogeneous transversely isotropic porous media with the JKD dynamic permeability. Comput. Mech. 36: 196–208. doi:10.1007/s00466-004-0652-3

    Article  MATH  Google Scholar 

  56. Zeidler E. (1985). Nonlinear Functional Analysis and its Applications, vol. II/B. Springer, New York

    Google Scholar 

  57. Corduneanu C. (1991). Integral Equations and Applications. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  58. Diethelm K., Ford N.J. (2003). Analysis of fractional differential equations. J. Math. Anal. Appl. 265: 229–248

    Article  MathSciNet  Google Scholar 

  59. Diekmann O., Lunel S.M.V., Walther H.-O., Gils S.A. (1995). Delay Equations, Functional-, Complex-, and Nonlinear Analysis. Springer, New York

    MATH  Google Scholar 

  60. Bernstein B., Kearsley E.A., Zapas L.J. (1963). A study of stress relaxation with finite strains. Trans. Soc. Rheol. 7: 391–410

    Article  Google Scholar 

  61. Laun H.M. (1978). Description of the non-linear shear behavior of a low-density polyethylene melt by means of an exerimentally determined strain dependent memory function. Rheol. Acta 17: 1–15

    Article  Google Scholar 

  62. Staverman A.J., Schwarzl F. (1952). Thermodynamics of viscoelastic behavior (model theory). Proc. Konink. Nederlands Akad. van Wetenschapen B55: 474–485

    Google Scholar 

  63. Breuer S., Onat E.T. (1964). On recoverable work in linear viscoelasticity. ZAMP 15: 13–21

    Article  Google Scholar 

  64. Seredyńska M., Hanyga A. (2000). Nonlinear Hamiltonian equations with fractional damping. J. Math. Phys. 41: 2135–2156

    Article  MathSciNet  MATH  Google Scholar 

  65. Desch W., Grimmer R. (2001). On the well-posedness of constitutive laws involving dissipation potentials. Trans. Am. Math. Soc. 353: 5095–5120

    Article  MATH  MathSciNet  Google Scholar 

  66. Fabrizio M., Morro A. (1992). Mathematical Problems in Linear Viscoelasticity. SIAM, Philadelphia

    MATH  Google Scholar 

  67. Diethelm, K., Freed, A.D.: The FracPECE subroutine for the numerical solution of differential equations of fractional order. pp 57–71 Gesellschaft für wissenschaftliche Dataverarbeitung, Göttingen (1999)

  68. Diethelm, K., Freed, A.D., Ford, N.: A predictor-corrector approach to the numerical solution of fractional differential equations. Nonlinear Dyn. 22, 3–22 (2002)

    Google Scholar 

  69. Enelund M., Olsson P. (1998). Damping described by fading memory – Analysis and application to fractional derivative models. Int. J. Solids Struct. 36: 939–970

    Article  MathSciNet  Google Scholar 

  70. Enelund M., Lesieutre G.A. (1999). Time-domain modeling of damping using anelastic displacement fields and fractional calculus. Int. J. Solids Struct. 36: 4447–4472

    Article  MATH  Google Scholar 

  71. Diethelm K. (1997). An algorithm for the numerical solution of differential equations of fractional order. Elect. Trans. Numer. Anal. 5: 1–6

    MATH  MathSciNet  Google Scholar 

  72. Newmark N.M. (1959). A method of computation for structural dynamics. ASCE J. Eng. Mech. Div. 5: 67–94

    Google Scholar 

  73. Cook R.D., Malkhus D.S., Plesha M.E., Witt R.J. (2002). Concepts and Applications of Finite Element Analysis. 4th edn. Wiley, New York

    Google Scholar 

  74. Day W.A. (1970). Restrictions on the relaxation functions in linear viscoelasticity. Quart. Jl Mech. Appl. Math. 24: 487–497

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Hanyga.

Additional information

Communicated by J.-J. Marigo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanyga, A. Fractional-order relaxation laws in non-linear viscoelasticity. Continuum Mech. Thermodyn. 19, 25–36 (2007). https://doi.org/10.1007/s00161-007-0042-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-007-0042-0

Keywords

PACS

Navigation