Skip to main content
Log in

Topology optimization with wall thickness and piecewise developability constraints for foldable shape-changing structures

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Foldable shape-changing structures such as origami, deployable, and 4D printed structures have potentials for enhanced packaging, adaptability, and motion capabilities. Distinct geometric features often found in such foldable shape-changing structures include developability and small wall thickness. In this paper, two geometric constraints are introduced to enable the use of density-based topology optimization in designing piecewise developable thin-walled structures. The proposed developability constraint enforces the normal directions of the surfaces of the structures to lie on a prescribed (small) number of input reference planes, which realizes an optimized structure made of piecewise developable surfaces. The proposed thin-wall constraint simultaneously bounds the minimum and the maximum feature sizes in the structures through two PDE-based filtering operations and an aggregation constraint. Several numerical examples demonstrate the effectiveness of the proposed constraints. While the additional constraints inevitably compromise the structural performance, the ability to control the desired geometric features in topology optimization would benefit the rapidly growing field of foldable shape-changing structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aumann G (2004) Degree elevation and developable Bézier surfaces. Comput Aided Geom Des 21:661

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsoe MP, Sigmund O (2003) Topology optimization: theory, methods, and applications. Springer Science & Business Media, New York

    MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443

    Article  MATH  Google Scholar 

  • Carstensen JV, Guest JK (2018) Projection-based two-phase minimum and maximum length scale control in topology optimization. In: Structural and multidisciplinary optimization, pp 1–16

  • Chu C-H, Séquin CH (2002) Developable Bézier patches: properties and design. Comput Aided Des 34:511

    Article  MATH  Google Scholar 

  • Clausen A, Aage N, Sigmund O (2015) Topology optimization of coated structures and material interface problems. Comput Methods Appl Mech Eng 290:524

    Article  MathSciNet  MATH  Google Scholar 

  • Clausen A, Andreassen E, Sigmund O (2015) Topology optimization for coated structures. In: Li Q, Steven GP, Zhang Z (eds) Proceedings of the 11th world congress on structural and multidisciplinary optimization, pp 7–12

  • Cozmei M, Hasseler T, Kinyon E, Wallace R, Deleo AA, Salviato M (2020) Aerogami: composite origami structures as active aerodynamic control. Compos B Eng 184:107719

    Article  Google Scholar 

  • Deleo AA, O’Neil J, Yasuda H, Salviato M, Yang J (2020) Origami-based deployable structures made of carbon fiber reinforced polymer composites. Compos Sci Technol 191:108060

    Article  Google Scholar 

  • Dienemann R, Schumacher A, Fiebig S (2017) Topology optimization for finding shell structures manufactured by deep drawing. Struct Multidisc Optim 56:473

    Article  MathSciNet  Google Scholar 

  • Elber G (1995) Model fabrication using surface layout projection. Comput Aided Des 27:283

    Article  MATH  Google Scholar 

  • Fernández E, Collet M, Alarcón P, Bauduin S, Duysinx P (2019) An aggregation strategy of maximum size constraints in density-based topology optimization. Struct Multidisc Optim 60:2113

    Article  Google Scholar 

  • Goldman R (2005) Curvature formulas for implicit curves and surfaces. Comput Aided Geom Des 22:632

    Article  MathSciNet  MATH  Google Scholar 

  • Guest JK (2009) Imposing maximum length scale in topology optimization. Struct Multidisc Optim 37:463

    Article  MathSciNet  MATH  Google Scholar 

  • Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Meth Eng 61:238

    Article  MathSciNet  MATH  Google Scholar 

  • Hoschek J (1998) Approximation of surfaces of revolution by developable surfaces. Comput Aided Des 30:757

    Article  MATH  Google Scholar 

  • Ion A, Rabinovich M, Herholz P, Sorkine-Hornung O (2020) Shape approximation by developable wrapping. ACM Trans Graph (TOG) 39:1

    Article  Google Scholar 

  • Jiang C, Wang C, Rist F, Wallner J, Pottmann H (2020) Quad-mesh based isometric mappings and developable surfaces. ACM Trans Graph (TOG) 39:128

    Article  Google Scholar 

  • Julius D, Kraevoy V, Sheffer A (2005) D-charts: quasi-developable mesh segmentation. Comput Graph Forum 24:581

    Article  Google Scholar 

  • Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidisc Optim 44:19

    Article  MATH  Google Scholar 

  • Kilian M, Flöry S, Chen Z, Mitra NJ, Sheffer A, Pottmann H (2008) Curved folding. ACM Trans Graph 27:75

    Article  Google Scholar 

  • Kühnel W (2015) Differential geometry, vol 77. American Mathematical Soc, New York

    Book  MATH  Google Scholar 

  • Laccone F, Malomo L, Pietroni N, Cignoni P, Schork T (2021) Integrated computational framework for the design and fabrication of bending-active structures made from flat sheet material. Structures 34:979–994

    Article  Google Scholar 

  • Lang J, Röschel O (1992) Developable (1, n)-Bézier surfaces. Comput Aided Geom Des 9:291

    Article  MATH  Google Scholar 

  • Lazarov BS, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Method Eng 86:765

    Article  MathSciNet  MATH  Google Scholar 

  • Lazarov BS, Wang F (2017) Maximum length scale in density based topology optimization. Comput Methods Appl Mech Eng 318:826

    Article  MathSciNet  MATH  Google Scholar 

  • Liu Y, Pottmann H, Wallner J, Yang Y-L, Wang W (2006) Geometric modeling with conical meshes and developable surfaces. ACM Trans Graph 25:681

    Article  Google Scholar 

  • Massarwi F, Elber G, Gotsman C (2007) Papercraft models using generalized cylinders. In: Computer graphics and applications, pacific conference on (PG) (IEEE), pp 148–157

  • Mitani J, Suzuki H (2004) Making papercraft toys from meshes using strip-based approximate unfolding. ACM Trans Graph 23:259

    Article  Google Scholar 

  • Niu B, Wadbro E (2019) On equal-width length-scale control in topology optimization. Struct Multidisc Optim 59:1321

    Article  Google Scholar 

  • Nomura T, Kawamoto A, Kondoh T, Dede EM, Lee J, Song Y, Kikuchi N (2019) Inverse design of structure and fiber orientation by means of topology optimization with tensor field variables. Compos B Eng 176:107187

    Article  Google Scholar 

  • Pottmann H, Schiftner A, Bo P, Schmiedhofer H, Wang W, Baldassini N, Wallner J (2008) Freeform surfaces from single curved panels. ACM Trans Graph 27:76

    Article  Google Scholar 

  • Pottmann H, Farin G (1995) Developable rational Bézier and B-spline surfaces. Comput Aided Geom Des 12:513

    Article  MATH  Google Scholar 

  • Poulsen TA (2003) A new scheme for imposing a minimum length scale in topology optimization. Int J Numer Meth Eng 57:741

    Article  MathSciNet  MATH  Google Scholar 

  • Pérez F, Suárez JA (2007) Quasi-developable B-spline surfaces in ship hull design. Comput Aided Des 39:853

    Article  Google Scholar 

  • Rabinovich M, Hoffmann T, Sorkine-Hornung O (2018) Discrete geodesic nets for modeling developable surfaces. ACM Trans Graph (ToG) 37:1

    Google Scholar 

  • Redoutey M, Roy A, Filipov ET (2021) Pop-up kirigami for stiff, dome-like structures. Int J Solids Struct 229:111140

    Article  Google Scholar 

  • Rose K, Sheffer A, Wither J, Cani M-P, Thibert B (2007) Developable surfaces from arbitrary sketched boundaries. In: SGP’07-5th Eurographics symposium on geometry processing (Eurographics Association), pp 163–172

  • Shatz I, Tal A, Leifman G (2006) Paper craft models from meshes. Vis Comput 22:825

    Article  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. J Struct Mech 25:493

    Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33:401

    Article  Google Scholar 

  • Solomon J, Vouga E, Wardetzky M, Grinspun E (2012) Flexible developable surfaces. Comput Graph Forum 31:1567

    Article  Google Scholar 

  • Stein O, Grinspun E, Crane K (2018) Developability of triangle meshes. ACM Trans Graph 37:77

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Method Eng 24:359

    Article  MathSciNet  MATH  Google Scholar 

  • Tahouni Y, Cheng T, Wood D, Sachse R, Thierer R, Bischoff M, Menges A (2020) Self-shaping curved folding: A 4D-printing method for fabrication of self-folding curved crease structures. In: Symposium on computational fabrication, pp 1–11

  • Tang C, Bo P, Wallner J, Pottmann H (2016) Interactive design of developable surfaces. ACM Trans Graph 35:12

    Article  Google Scholar 

  • Träff EA, Sigmund O, Aage N (2021) Topology optimization of ultra high resolution shell structures. Thin Walled Struct 160:107349

    Article  Google Scholar 

  • Wang C, Qian X (2018) Heaviside projection-based aggregation in stress-constrained topology optimization. Int J Numer Meth Eng 115:849

    Article  MathSciNet  Google Scholar 

  • Wu J, Aage N, Westermann R, Sigmund O (2018) Infill optimization for additive manufacturing-approaching bone-like porous structures. IEEE Trans Visual Comput Graphics 24:1127

    Article  Google Scholar 

  • Wu J, Clausen A, Sigmund O (2017) Minimum compliance topology optimization of shell-infill composites for additive manufacturing. Comput Methods Appl Mech Eng 326:358

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang S, Gain AL, Norato JA (2017) Stress-based topology optimization with discrete geometric components. Comput Methods Appl Mech Eng 325:1

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang S, Gain AL, Norato JA (2018) A geometry projection method for the topology optimization of curved plate structures with placement bounds. Int J Numer Meth Eng 114:128

    Article  MathSciNet  Google Scholar 

  • Zhang S, Norato JA, Gain AL, Lyu N (2016) A geometry projection method for the topology optimization of plate structures. Struct Multidisc Optim 54:1173

    Article  MathSciNet  Google Scholar 

  • Zhang W, Zhong W, Guo X (2014) An explicit length scale control approach in SIMP-based topology optimization. Comput Methods Appl Mech Eng 282:71

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou M, Lazarov BS, Wang F, Sigmund O (2015) Minimum length scale in topology optimization by geometric constraints. Comput Methods Appl Mech Eng 293:266

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou Y, Nomura T, Saitou K (2021) Anisotropic multicomponent topology optimization for additive manufacturing with build orientation design and stress-constrained interfaces. J Comput Inform Sci Eng 21:011007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqing Zhou.

Ethics declarations

Conflict of interest

The authors have no conflict of interest in the preparation or publication of this work.

Replication of Results

Due to institutional constraints, the source code is unavailable. However, further algorithm details are available upon request to the authors.

Additional information

Responsible Editor: Qing Li

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Nomura, T., Dede, E.M. et al. Topology optimization with wall thickness and piecewise developability constraints for foldable shape-changing structures. Struct Multidisc Optim 65, 118 (2022). https://doi.org/10.1007/s00158-022-03219-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-022-03219-8

Keywords

Navigation