Skip to main content
Log in

Topology optimization of programmable lattices with geometric primitives

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This work presents a topology optimization method for the design of programmable lattice materials whose struts can be activated/deactivated by some actuation mechanism. The proposed method simultaneously determines the spatial layout of struts in the unit cell, and two or more programs corresponding to the open/close states of the struts in order to attain desired effective properties. A high-level parametric description of the cylindrical struts in the unit cell is smoothly mapped onto a fixed mesh for analysis via the geometry projection method. Desired material symmetries are imposed by reflections with respect to the symmetry planes in the computation of the projected density. The open/close state of a strut is modeled by assigning a state variable per program to each strut, and a discreteness constraint in the optimization ensures these variables are zero or unity in the optimal design. To aid manufacturability, a no-cut constraint is imposed to preclude partial cuts of the struts by the symmetry planes or the unit cell boundaries and thus ensure that struts are whole in the optimal design. The effectiveness of the proposed method is demonstrated with examples of minimal volume design for two and three programs with target bulk moduli and for two programs with a bulk modulus target and a Poisson’s ratio target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-voxel computational morphogenesis for structural design. Nature 550(7674):84

    Google Scholar 

  • Ajdari A, Nayeb-Hashemi H, Vaziri A (2011) Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures. Int J Solids Struct 48(3–4):506–516

    MATH  Google Scholar 

  • Akl W, Baz A (2010) Multi-cell active acoustic metamaterial with programmable bulk modulus. J intell Mater Syst Struct 21(5):541–556

    Google Scholar 

  • Allison J (2004) Complex system optimization: a review of analytical target cascading, collaborative optimization, and other formulations. PhD Thesis. University of Illinois at Urbana-Champaign

  • Ambati M, Fang N, Sun C, Zhang X (2007) Surface resonant states and superlensing in acoustic metamaterials. Phys Rev B 75(19):195447

    Google Scholar 

  • Andreassen E, Andreasen CS (2014) How to determine composite material properties using numerical homogenization. Comput Mater Sci 83:488–495

    Google Scholar 

  • Baz AM (2010) An active acoustic metamaterial with tunable effective density. J Vib Acoust 10(1115/1):4000983

    Google Scholar 

  • Bückmann T, Schittny R, Thiel M, Kadic M, Milton GW, Wegener M (2014) On three-dimensional dilational elastic metamaterials. New J Phys 16(3):033032

    Google Scholar 

  • Caloz C, Itoh T (2005) Electromagnetic metamaterials: transmission line theory and microwave applications. Wiley, Hoboken

    Google Scholar 

  • Chen H, Chan C (2007) Acoustic cloaking in three dimensions using acoustic metamaterials. Appl Phys Lett 91(18):183518

    Google Scholar 

  • Choi J, Lakes R (1992) Non-linear properties of polymer cellular materials with a negative Poisson’s ratio. J Mater Sci 27(17):4678–4684

    Google Scholar 

  • Christensen J, Kadic M, Kraft O, Wegener M (2015) Vibrant times for mechanical metamaterials. MRS Commun 5(3):453–462

    Google Scholar 

  • Coniglio S, Morlier J, Gogu C, Amargier R (2019) Generalized geometry projection: a unified approach for geometric feature based topology optimization. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-019-09362-8

    Article  Google Scholar 

  • Cui TJ, Qi MQ, Wan X, Zhao J, Cheng Q (2014) Coding metamaterials, digital metamaterials and programmable metamaterials. Light: Sci Appl 3(10):e218–e218

    Google Scholar 

  • Deng H, To AC (2020) Linear and nonlinear topology optimization design with projection-based ground structure method (p-gsm). Int J Numer Methods Eng 121(11):2437–2461

    MathSciNet  Google Scholar 

  • Engheta N, Ziolkowski RW (2006) Metamater: Phys Eng Explor. Wiley, Explorations

    Google Scholar 

  • Evans AG, Hutchinson J, Ashby M (1998) Multifunctionality of cellular metal systems. Prog Mater Sci 43(3):171–221

    Google Scholar 

  • Evans AG, Hutchinson JW, Fleck NA, Ashby M, Wadley H (2001) The topological design of multifunctional cellular metals. Prog Mater Sci 46(3–4):309–327

    Google Scholar 

  • Feng S, Li M, Joo J, Kang K, Kim T, Lu T (2012) Thermomechanical properties of brazed wire-woven bulk kagome cellular metals for multifunctional applications. J Thermophys Heat Transf 26(1):66–74

    Google Scholar 

  • Fleck Na, Deshpande V, Ashby M (2010) Micro-architectured materials: past, present and future. Proc R Soc A 466(2121):2495–2516

    Google Scholar 

  • Florijn B, Coulais C, van Hecke M (2014) Programmable mechanical metamaterials. Phys Rev Lett 113(17):175503

    Google Scholar 

  • Geiss MJ, Boddeti N, Weeger O, Maute K, Dunn ML (2019) Combined level-set-XFEM-density topology optimization of four-dimensional printed structures undergoing large deformation. J Mech Des 10(1115/1):4041945

    Google Scholar 

  • Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press

  • Guedes J, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83(2):143–198

    MathSciNet  MATH  Google Scholar 

  • Gusev VE, Wright OB (2014) Double-negative flexural acoustic metamaterial. New J Phys 16(12):123053

    Google Scholar 

  • Haghpanah B, Ebrahimi H, Mousanezhad D, Hopkins J, Vaziri A (2016) Programmable elastic metamaterials. Adv Eng Mater 18(4):643–649

    Google Scholar 

  • Han T, Bai X, Thong JT, Li B, Qiu CW (2014) Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials. Adv Mater 26(11):1731–1734

    Google Scholar 

  • Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96(25):251104

    Google Scholar 

  • Hohe J, Hardenacke V, Fascio V, Girard Y, Baumeister J, Stöbener K, Weise J et al (2012) Numerical and experimental design of graded cellular sandwich cores for multi-functional aerospace applications. Mater Des 39:20–32

    Google Scholar 

  • Jia Z, Liu F, Jiang X, Wang L (2020) Engineering lattice metamaterials for extreme property, programmability, and multifunctionality. J Appl Phys 127(15):150901

    Google Scholar 

  • Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA et al (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10):630–634

    Google Scholar 

  • Kang Z, James KA (2020) Thermomechanical topology optimization of shape-memory alloy structures using a transient bilevel adjoint method. Int J Numer Methods Eng 121(11):2558–2580

    MathSciNet  Google Scholar 

  • Kang Z, Wang Y (2013) Integrated topology optimization with embedded movable holes based on combined description by material density and level sets. Comput Methods Appl Mech Eng 255:1–13

    MathSciNet  MATH  Google Scholar 

  • Kazemi H, Vaziri A, Norato JA (2018) Topology optimization of structures made of discrete geometric components with different materials. J Mech Des 140(11):111401

    Google Scholar 

  • Kazemi H, Vaziri A, Norato JA (2020) Multi-material topology optimization of lattice structures using geometry projection. Comput Methods Appl Mech Eng 363:112895

    MathSciNet  MATH  Google Scholar 

  • Li J, Chan CT (2004) Double-negative acoustic metamaterial. Phys Rev E 70(5):055602

    Google Scholar 

  • Lim TC (2014a) Buckling and vibration of circular auxetic plates. J Eng Mater Technol 136(2):021007

    Google Scholar 

  • Lim TC (2014b) Vibration of thick auxetic plates. Mech Res Commun 61:60–66

    Google Scholar 

  • Liu X, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ (2011) Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107(4):045901

    Google Scholar 

  • Lu T, Stone HA, Ashby M (1998) Heat transfer in open-cell metal foams. Acta Mater 46(10):3619–3635

    Google Scholar 

  • Lu MH, Feng L, Chen YF (2009) Phononic crystals and acoustic metamaterials. Mater today 12(12):34–42

    Google Scholar 

  • Ma Y, Scarpa F, Zhang D, Zhu B, Chen L, Hong J (2013) A nonlinear auxetic structural vibration damper with metal rubber particles. Smart Mater Struct 22(8):084012

    Google Scholar 

  • Maiti S, Gibson L, Ashby M (1984) Deformation and energy absorption diagrams for cellular solids. Acta Metall 32(11):1963–1975

    Google Scholar 

  • Majidi C, Wood RJ (2010) Tunable elastic stiffness with microconfined magnetorheological domains at low magnetic field. Appl Phys Lett 97(16):164104

    Google Scholar 

  • Moser H, Casse B, Wilhelmi O, Saw B (2005) Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial. Phys Rev Lett 94(6):063901

    Google Scholar 

  • Narayana S, Savo S, Sato Y (2013) Transient heat flux shielding using thermal metamaterials. Appl Phys Lett 102(20):201904

    Google Scholar 

  • Norato J, Haber R, Tortorelli D, Bendsøe MP (2004) A geometry projection method for shape optimization. Int J Numer Methods Eng 60(14):2289–2312

    MathSciNet  MATH  Google Scholar 

  • Norato J, Bell B, Tortorelli D (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comput Methods Appl Mech Eng 293:306–327

    MathSciNet  MATH  Google Scholar 

  • Overvelde JT (2012) The moving node approach in topology optimization. Master’s thesis, Delft Unversity of Technology

  • Shalaev VM, Cai W, Chettiar UK, Yuan HK, Sarychev AK, Drachev VP, Kildishev AV (2005) Negative index of refraction in optical metamaterials. Opt Lett 30(24):3356–3358

    Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidisc Optim 48(6):1031–1055

    MathSciNet  Google Scholar 

  • Silverberg JL, Evans AA, McLeod L, Hayward RC, Hull T, Santangelo CD, Cohen I (2014) Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345(6197):647–650

    Google Scholar 

  • Smith H, Norato JA (2020a) A matlab code for topology optimization using the geometry projection method. Struct Multidisc Optim 62:1579–1594

    MathSciNet  Google Scholar 

  • Smith H, Norato JA (2020b) Topology optimization with discrete geometric components made of composite materials. Comput Methods Appl Mech Eng 376:113582

    MathSciNet  MATH  Google Scholar 

  • Soukoulis CM, Wegener M (2010) Optical metamaterials—more bulky and less lossy. Science 330(6011):1633–1634

    Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573

    MathSciNet  MATH  Google Scholar 

  • Svanberg K (2007) MMA and GCMMA, versions september 2007. Optim Syst Theory 104. https://people.kth.se/~krille/gcmma07.pdf

  • Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455(7211):376–379

    Google Scholar 

  • Wadley HN (2006) Multifunctional periodic cellular metals. Philos Trans R Soc A 364(1838):31–68

    Google Scholar 

  • Watts S, Tortorelli DA (2017) A geometric projection method for designing three-dimensional open lattices with inverse homogenization. Int J Numer Methods Eng 112:1564–1588

    MathSciNet  Google Scholar 

  • Wein F, Dunning PD, Norato JA (2020) A review on feature-mapping methods for structural optimization. Struct Multidisc Optim. https://doi.org/10.1007/s00158-020-02649-6

    Article  MathSciNet  Google Scholar 

  • Wen T, Xu F, Lu T (2007) Structural optimization of two-dimensional cellular metals cooled by forced convection. Int J Heat Mass Transf 50(13–14):2590–2604

    MATH  Google Scholar 

  • Wu Y, Lai Y, Zhang ZQ (2011) Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys Rev Lett 107(10):105506

    Google Scholar 

  • Yang T, Vemuri KP, Bandaru PR (2014) Experimental evidence for the bending of heat flux in a thermal metamaterial. Appl Phys Lett 105(8):083908

    Google Scholar 

  • Zhang S, Norato JA, Gain AL, Lyu N (2016) A geometry projection method for the topology optimization of plate structures. Struct Multidisc Optim 54(5):1173–1190

    MathSciNet  Google Scholar 

  • Zhang S, Gain AL, Norato JA (2020) Adaptive mesh refinement for topology optimization with discrete geometric components. Comput Methods Appl Mech Eng 364:112930

    MathSciNet  MATH  Google Scholar 

  • Zhu J, Christensen J, Jung J, Martin-Moreno L, Yin X, Fok L, Zhang X, Garcia-Vidal F (2011) A holey-structured metamaterial for acoustic deep-subwavelength imaging. Nat Phys 7(1):52–55

    Google Scholar 

Download references

Acknowledgements

Support from the National Science Foundation, award CMMI-1634563 to conduct this work is gratefully acknowledged. We also thank Niels Aage and collaborators for their parallel implementation of MMA Aage et al. (2017), which we used for the optimization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián A. Norato.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Replication of results

The MATLAB code implementing the method described in this manuscript is available from the corresponding author upon reasonable request and for non-commercial purposes.

Additional information

Responsible Editor: Seonho Cho

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, H., Norato, J.A. Topology optimization of programmable lattices with geometric primitives. Struct Multidisc Optim 65, 33 (2022). https://doi.org/10.1007/s00158-021-03094-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-021-03094-9

Keywords

Navigation