Skip to main content
Log in

Shape and topology optimization in electrical impedance tomography via moving morphable components method

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper addresses the challenge of reconstructing multiphase conductivity distributions using electrical impedance tomography (EIT). The reconstruction method developed in the paper utilizes the moving morphable component (MMC) approach, where the unknown inclusion(s) to be reconstructed is (are) composed of several candidate morphable components. This work introduces a signed distance-based shape and topology description function (STDF) in lieu of the recently developed hyperelliptic STDF in the MMC approach, thereby absolving the requirement of exponent values. The MMC approach uses explicit geometric entities for the morphable components that are controlled by geometric parameters, such as varying thickness, length, and angle. The optimal inclusion shapes are found by optimizing these geometric parameters in STDFs. Numerical simulation and water tank experiments are used to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The derivatives of fs with respect to shape design variables can be found using Symbolic Math Toolbox™software.

References

  • Adler A, Boyle A (2017) Electrical impedance tomography: Tissue properties to image measures. IEEE Trans Biomed Eng 64(11):2494–2504

    Article  Google Scholar 

  • Al Hosani E, Soleimani M (2016) Multiphase permittivity imaging using absolute value electrical capacitance tomography data and a level set algorithm. Phil Trans R Soc A 374(2070):20150332

    Article  Google Scholar 

  • Albuquerque YF, Laurain A, Sturm K (2020) A shape optimization approach for electrical impedance tomography with point measurements. Inverse Problems 36(9):095006

    Article  MathSciNet  MATH  Google Scholar 

  • Ammari H, Garnier J, Kang H, Lim M, Yu S (2014) Generalized polarization tensors for shape description. Numer Math 126(2):199–224

    Article  MathSciNet  MATH  Google Scholar 

  • Barber DC, Brown BH (1984) Applied potential tomography. J Phys E Scientif Instrument 17(9):723–733

    Article  Google Scholar 

  • Beretta E, Micheletti S, Perotto S, Santacesaria M (2018) Reconstruction of a piecewise constant conductivity on a polygonal partition via shape optimization in EIT. J Comput Phys 353:264–280

    Article  MathSciNet  MATH  Google Scholar 

  • de Castro Martins T, Sato AK, de Moura FS, de Camargo EDLB, Silva OL, Santos TBR, Zhao Z, Möeller K, Amato MBP, Mueller JL et al (2019) A review of electrical impedance tomography in lung applications: theory and algorithms for absolute images. Annual Reviews in Control

  • Chen X (2018) Computational methods for electromagnetic inverse scattering. Wiley, Hoboken

    Book  Google Scholar 

  • Coniglio S, Morlier J, Gogu C, Amargier R (2019) Generalized geometry projection: a unified approach for geometric feature based topology optimization. Arch Comput Methods Eng 1–38

  • Costa EL, Chaves CN, Gomes S, Beraldo MA, Volpe MS, Tucci MR, Schettino IA, Bohm SH, Carvalho CR, Tanaka H et al (2008) Real-time detection of pneumothorax using electrical impedance tomography. Crit Care Med 36(4):1230–1238

    Article  Google Scholar 

  • Fang W (2007) Multi-phase permittivity reconstruction in electrical capacitance tomography by level-set methods. Inverse Problems in Sci Eng 15(3):213–247

    Article  MathSciNet  MATH  Google Scholar 

  • González G, Huttunen J, Kolehmainen V, Seppänen A, Vauhkonen M (2016) Experimental evaluation of 3d electrical impedance tomography with total variation prior. Inverse Problems Sci Eng 24(8):1411–1431

    Article  Google Scholar 

  • González G, Kolehmainen V, Seppänen A (2017) Isotropic and anisotropic total variation regularization in electrical impedance tomography. Comput Math Appl 74(3):564–576

    Article  MathSciNet  MATH  Google Scholar 

  • Gu D, Liu D, Smyl D, Deng J, Du J (2021) Supershape recovery from electrical impedance tomography data. IEEE Trans Instrument Measure 70:1–11. https://doi.org/10.1109/TIM.2021.3064802

    Google Scholar 

  • Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J Appl Mechan 81(8):081009

    Article  Google Scholar 

  • Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng 310:711–748

    Article  MathSciNet  MATH  Google Scholar 

  • Hamilton SJ, Hauptmann A (2018) Deep d-bar: real time electrical impedance tomography imaging with deep neural networks. IEEE Trans Med Imaging 37(10):2367–2377

    Article  Google Scholar 

  • Hamilton SJ, Reyes JM, Siltanen S, Zhang X (2016) A hybrid segmentation and d-bar method for electrical impedance tomography. SIAM J Imaging Sci 9(2):770–793

    Article  MathSciNet  MATH  Google Scholar 

  • Harrach B, Ullrich M (2013) Monotonicity-based shape reconstruction in electrical impedance tomography. SIAM J Math Anal 45(6):3382–3403

    Article  MathSciNet  MATH  Google Scholar 

  • Hiles A, Dorn O (2020) Colour level set regularization for the electromagnetic imaging of highly discontinuous parameters in 3d. Inverse Problems Sci Eng 1–36

  • Hintermüller M, Laurain A (2008) Electrical impedance tomography: from topology to shape. Control Cybern 37(4)

  • Hintermüller M, Laurain A, Novotny AA (2012) Second-order topological expansion for electrical impedance tomography. Adv Comput Math 36(2):235–265

    Article  MathSciNet  MATH  Google Scholar 

  • Hoang VN, Jang GW (2017) Topology optimization using moving morphable bars for versatile thickness control. Comput Methods Appl Mech Eng 317:153–173

    Article  MathSciNet  MATH  Google Scholar 

  • Kourunen J, Savolainen T, Lehikoinen A, Vauhkonen M, Heikkinen L (2009) Suitability of a pxi platform for an electrical impedance tomography system. Measure Sci Technol 20(1):015503

    Article  Google Scholar 

  • Laurain A, Sturm K (2016) Distributed shape derivative via averaged adjoint method and applications. ESAIM Math Model Numer Anal 50(4):1241–1267

    Article  MathSciNet  MATH  Google Scholar 

  • Li S, Montcel B, Yuan Z, Liu W, Vray D (2015) Multigrid-based reconstruction algorithm for quantitative photoacoustic tomography. Biomed Opt Express 6(7):2424–2434

    Article  Google Scholar 

  • Lian R, Jing S, He Z, Shi Z, Song G (2020) An accelerating convergence rate method for moving morphable components. Math Probl Eng 2020

  • Lieberman C, Willcox K, Ghattas O (2010) Parameter and state model reduction for large-scale statistical inverse problems. SIAM J Sci Comput 32:2523–2542

    Article  MathSciNet  MATH  Google Scholar 

  • Liu D, Du J (2019) A moving morphable components based shape reconstruction framework for electrical impedance tomography. IEEE Trans Med Imaging 38(12):2937–2948

    Article  Google Scholar 

  • Liu D, Khambampati AK, Kim S, Kim KY (2015) Multi-phase flow monitoring with electrical impedance tomography using level set based method. Nucl Eng Des 289:108–116

    Article  Google Scholar 

  • Liu D, Khambampati AK, Du J (2018a) A parametric level set method for electrical impedance tomography. IEEE Trans Med Imaging 37(2):451–460. https://doi.org/10.1109/TMI.2017.2756078

    Article  Google Scholar 

  • Liu D, Zhao Y, Khambampati AK, Seppanen A, Du J (2018b) A parametric level set method for imaging multi-phase conductivity using electrical impedance tomography. IEEE Trans Comput Imaging 4(4):552–561. https://doi.org/10.1109/TCI.2018.2863038

    Article  Google Scholar 

  • Liu D, Gu D, Smyl D, Deng J, Du J (2019) B-spline-based sharp feature preserving shape reconstruction approach for electrical impedance tomography. IEEE Trans Med Imaging 38:2533–2544

    Article  Google Scholar 

  • Liu D, Gu D, Smyl D, Deng J, Du J (2020a) B-spline level set method for shape reconstruction in electrical impedance tomography. IEEE Trans Med Imaging 39(6):1917–1929

    Article  Google Scholar 

  • Liu D, Gu D, Smyl D, Deng J, Du J (2020b) Multiphase conductivity imaging with electrical impedance tomography and b-spline level set method. IEEE Trans Instrum Meas 69(12):9634–9644

    Article  Google Scholar 

  • Liu D, Gu D, Smyl D, Deng J, Du J (2020c) Shape reconstruction using boolean operations in electrical impedance tomography. IEEE Trans Med Imaging 39(9):2954–2964

    Article  Google Scholar 

  • Liu D, Gu D, Smyl D, Khambampati AK, Deng J, Du J (2020d) Shape-driven eit reconstruction using fourier representations. IEEE Trans Med Imaging 40(2):481–490

    Article  Google Scholar 

  • Liu D, Smyl D, Du J (2020e) Nonstationary shape estimation in electrical impedance tomography using a parametric level set-based extended kalman filter approach. IEEE Trans Instrum Meas 69(5):1894–1907

    Article  Google Scholar 

  • Liu D, Smyl D, Gu D, Du J (2020f) Shape-driven difference electrical impedance tomography. IEEE Trans Med Imaging 39(12):3801–3812

    Article  Google Scholar 

  • Ma Y, Miao L, Qin H, Chen X, Xiong X, Han T, Qin P, Ji X, Cai P (2018) A new modular semi-parallel eit system for medical application. Biomed Signal Process Cont 39:416–423

    Article  Google Scholar 

  • Mei Y, Du Z, Zhao D, Zhang W, Liu C, Guo X (2021) Moving morphable inclusion approach: an explicit framework to solve inverse problem in elasticity. J Appl Mech 88(4)

  • Mueller JL, Siltanen S (2020) The D-bar method for electrical impedance tomography—demystified. Inverse Problems

  • Nissinen A, Kolehmainen VP, Kaipio JP (2011) Compensation of modelling errors due to unknown domain boundary in electrical impedance tomography. IEEE Trans Med Imaging 30(2):231– 242

    Article  MATH  Google Scholar 

  • Ren S, Wang Y, Liang G, Dong F (2018) A robust inclusion boundary reconstructor for electrical impedance tomography with geometric constraints. IEEE Trans Instrum Meas 68(3):762–773

    Article  Google Scholar 

  • Ren S, Sun K, Liu D, Dong F (2019) A statistical shape-constrained reconstruction framework for electrical impedance tomography. IEEE Trans Med Imaging 38(10):2400–2410

    Article  Google Scholar 

  • Samorè A, Guermandi M, Placati S, Guerrieri R (2017) Parametric detection and classification of compact conductivity contrasts with electrical impedance tomography. IEEE Trans Instrum Meas 66 (10):2666–2679

    Article  Google Scholar 

  • Sorkine O, Cohen-Or D, Irony D, Toledo S (2005) Geometry-aware bases for shape approximation. IEEE Trans Visual Comput Graph 11(2):171–180

    Article  Google Scholar 

  • Tan C, Lv S, Dong F, Takei M (2019) Image reconstruction based on convolutional neural network for electrical resistance tomography. IEEE Sensors J 19(1):196–204

    Article  Google Scholar 

  • Tian W, Suo P, Liu D, Sun S, Sun J, Xu L (2021) Simultaneous shape and permittivity reconstruction in ECT with sparse representation: two-phase distribution imaging. IEEE Trans Instrum Meas 70:1–14

    Google Scholar 

  • Vauhkonen M, Vadasz D, Karjalainen PA, Somersalo E, Kaipio JP (1998) Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans Med Imaging 17(2):285– 293

    Article  Google Scholar 

  • Vauhkonen P, Vauhkonen M, Savolainen T, Kaipio J (1999) Three-dimensional electrical impedance tomography based on the complete electrode model. IEEE Trans Biomed Eng 46:1150–1160

    Article  Google Scholar 

  • Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the mumford and shah model. Int J Comput Vision 50(3):271–293

    Article  MATH  Google Scholar 

  • Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  • Xiao Z, Tan C, Dong F (2019) 3-d hemorrhage imaging by cambered magnetic induction tomography. IEEE Trans Instrument Measure 68(7):2460–2468

    Article  Google Scholar 

  • Yao J, Takei M (2017) Application of process tomography to multiphase flow measurement in industrial and biomedical fields-a review. IEEE Sensors Journal

  • Zhang S, Norato JA, Gain AL, Lyu N (2016a) A geometry projection method for the topology optimization of plate structures. Struct Multidiscip Optim 54(5):1173–1190

    Article  MathSciNet  Google Scholar 

  • Zhang W, Yuan J, Zhang J, Guo X (2016b) A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct Multidiscip Optim 53 (6):1243–1260

    Article  MathSciNet  Google Scholar 

  • Zhang W, Song J, Zhou J, Du Z, Zhu Y, Sun Z, Guo X (2018) Topology optimization with multiple materials via moving morphable component (MMC) method. Int J Numer Methods Eng 113 (11):1653–1675

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Danny Smyl, PhD for the helpful discussions. Also, the authors would like to thank the inverse problems group at University of Eastern Finland for providing us with the experimental data.

Funding

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61871356 and 81788101), in part by the National Key R&D Program of China (Grant No. 2018YFA0306600), in part by the Chinese Academy of Sciences (Grant Nos. XDC07040200, GJJSTD20170001, and QYZDY-SSW-SLH004), and in part by the Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Liu.

Ethics declarations

Consent for publication

We would like to declare that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Anton Evgrafov

Replication of results

To perform replication of the results presented in this paper, all parameter settings and implementation aspects have been described in detail in the paper. If the information provided in the paper is not sufficient, interested readers are welcome to contact the authors for further explanations.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Du, J. Shape and topology optimization in electrical impedance tomography via moving morphable components method. Struct Multidisc Optim 64, 585–598 (2021). https://doi.org/10.1007/s00158-021-02970-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-021-02970-8

Keywords

Navigation