Skip to main content
Log in

A data-driven polynomial chaos method considering correlated random variables

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Variable correlation commonly exists in practical engineering applications. However, most of the existing polynomial chaos (PC) approaches for uncertainty propagation (UP) assume that the input random variables are independent. To address variable correlation, an intrusive PC method has been developed for dynamic system, which however is not applicable to problems with black-box-type functions. Therefore, based on the existing data-driven PC method, a new non-intrusive data-driven polynomial chaos approach that can directly consider variable correlation for UP of black-box computationally expensive problems is developed in this paper. With the proposed method, the multivariate orthogonal polynomial basis corresponding to the correlated input random variables is conveniently constructed by solving the moment-matching equations based on the correlation statistical moments to consider the variable correlation. A comprehensive comparative study on several numerical examples of UP and design optimization under uncertainty with correlated input random variables is conducted to verify the effectiveness and advantage of the proposed method. The results show that the proposed method is more accurate than the existing data-driven PC method with Nataf transformation when the variable distribution is known, and it can produce accurate results with unknown variable distribution, demonstrating its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

b i :

The ith coefficient of PC model

d :

Dimension of random inputs

x :

Random input vector

y :

Stochastic response value

H :

Order of PC model

P (k) :

The kth orthogonal polynomials for correlated variables

\( \overline{P} \) :

The orthogonal polynomials for independent variables

Q + 1:

Number of PC coefficients

μ :

Mean value

μ a, b :

Correlation statistical moment

ρ :

Correlation coefficient

σ :

Standard deviation value

Ωc :

Original correlated random variable space

Γ(x):

Joint cumulative distribution function

DD-PC:

The data-driven polynomial chaos method

gPC:

The generalized polynomial chaos method

GS-PC:

The Gram-Schmidt polynomial chaos method

ME-PC:

The multi-element generalized polynomial chaos method

PC:

Polynomial chaos

UP:

Uncertainty propagation

References

  • Abou SC (2012) Fuzzy-logic-based network for complex systems risk assessment: application to ship performance analysis. Accid Anal Prev 45(2):305–316

    Article  Google Scholar 

  • Arora JS (2004) Introduction to optimum design, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Coelho RF, Bouillard P (2011) Multi-objective reliability-based optimization with stochastic metamodels. Evol Comput 19(4):525–560

    Article  Google Scholar 

  • Dodson M, Parks GT (2015) Robust aerodynamic design optimization using polynomial chaos. J Aircr 46(2):635–646

    Article  Google Scholar 

  • Du XP (2008) Saddlepoint approximation for sequential optimization and reliability analysis. J Mech Des 130(1):842–849

    Article  Google Scholar 

  • Guo L, Liu YL, Zhou T (2019) Data-driven polynomial chaos expansions: a weighted least-square approximation. J Comput Phys 381(1):129–145

    Article  MathSciNet  Google Scholar 

  • Hampton J, Doostan A (2018) Basis adaptive sample efficient polynomial chaos (BASE-PC). J Comput Phys 371(2):20–49

    Article  MathSciNet  MATH  Google Scholar 

  • Hosder S, Walters R W, Balch M (2007) Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, USA

  • Isukapalli SS (1999) Uncertainty analysis of transport-transformation models. PhD thesis of The State University of New Jersey

  • Isukapalli SS, Roy A, Georgopoulos PG (2000) Efficient sensitivity/uncertainty analysis using the combined stochastic response surface method and automated differentiation: application to environmental and biological systems. Risk Anal Off Publ Soc Risk Anal 20(5):591–602

    Google Scholar 

  • Kiureghian D, Liu PL (1986) Structural reliability under incomplete probability information. J Eng Mech 112(1):85–104

    Article  Google Scholar 

  • Lebrun R, Dutfoy A (2009) An innovating analysis of the Nataf transformation from the copula viewpoint. Probabilistic Eng Mech 24(3):312–320

    Article  Google Scholar 

  • Lee SH, Chen W (2009) A comparative study of uncertainty propagation methods for black-box-type problems. Struct Multidiscip Optim 37(3):239–253

    Article  Google Scholar 

  • Li Y, Wang X, Wang L et al (2017) Non-probabilistic stability reliability measure for active vibration control system with interval parameters. J Sound Vib 387:1–15

    Article  Google Scholar 

  • Liu X, Wang X, Xie J et al (2019) Construction of probability box model based on maximum entropy principle and corresponding hybrid reliability analysis approach. Struct Multidiscip Optim:1–19

  • Mukhopadhyay S, Khodaparast H, Adhikari S (2016) Fuzzy uncertainty propagation in composites using gram-schmidt polynomial chaos expansion. Appl Math Model 40(7–8):4412–4428

    MathSciNet  MATH  Google Scholar 

  • Noh Y, Choi KK, Liu D (2009) Reliability-based design optimization of problems with correlated input variables using a Gaussian copula. Struct Multidiscip Optim 38(1):1–16

    Article  Google Scholar 

  • Oladyshkin S, Nowak W (2012) Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliabil Eng Syst Saf 106(4):179–190

    Article  Google Scholar 

  • Oladyshkin S, Class H, Helmig R, Nowak W. A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations. Adv Water Resour, 2011, 34(11): 0–1518

  • Oladyshkin S, Class H, Nowak W (2013) Bayesian updating via bootstrap filtering combined with data-driven polynomial chaos expansions: methodology and application to history matching for carbon dioxide storage in geological formations. Comput Geosci 17(4):671–687

    Article  MATH  Google Scholar 

  • Paulson JA, Buehler EA, Mesbah A (2017) Arbitrary polynomial chaos for uncertainty propagation of correlated random variables in dynamic systems. IFAC-PapersOnLine 50(1):3548–3553

    Article  Google Scholar 

  • Prabhakar A, Fisher J, Bhattacharya R (2010) Polynomial chaos-based analysis of probabilistic uncertainty in hypersonic flight dynamics. J Guid Control Dyn 33(1):222–234

    Article  Google Scholar 

  • Rackwitz R, Flessler B (1978) Structural reliability under combined random load sequences. Comput Struct 9(5):489–494

    Article  MATH  Google Scholar 

  • Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23(3):470–472

    Article  MathSciNet  MATH  Google Scholar 

  • Sinou JJ, Jacquelin E (2015) Influence of polynomial chaos expansion order on an uncertain asymmetric rotor system response. Mech Syst Signal Process 50:718–731

    Article  Google Scholar 

  • Socie DF (2003) Seminar notes: probabilistic aspects of fatigue. University of Illinois Press, Illinois

    Google Scholar 

  • Song SF, Lu ZZ, Song ZS (2011) Reliability sensitivity analysis involving correlated random variables by directional sampling. International Conference on Quality and Reliability, Thailand. 845–850

  • Wan X, Karniadakis GE (2006) Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J Sci Comput 28(3):901–928

    Article  MathSciNet  MATH  Google Scholar 

  • Wang FG, Xiong FF, Jiang H, Song JM (2017) An enhanced data-driven polynomial chaos method for uncertainty propagation. Eng Optim 50(2):273–292

    Article  Google Scholar 

  • Wang GZ, Xin HH, Wu D et al (2019) Data-driven arbitrary polynomial chaos-based probabilistic load flow considering correlated uncertainties. IEEE Trans Power Syst 34(4):3274–3276

    Article  Google Scholar 

  • Wei X, Feng BW, Liu ZY (2018) Ship uncertainty optimization design based on multidimensional polynomial chaos expansion method. Ship Eng 1(40):42–47

    Google Scholar 

  • William C, Meecham DTJ (1968) Use of the wiener—hermite expansion for nearly normal turbulence. J Fluid Mech 32(2):225–249

    Article  MathSciNet  MATH  Google Scholar 

  • Witteveen JAS, Bijl H (2013) Modeling arbitrary uncertainties using gram-schmidt polynomial chaos. AIAA 2013 Aerospace sciences meeting & exhibit, USA

  • Xia BZ, Qin Y, Chen N et al (2017) Optimization of uncertain acoustic metamaterial with Helmholtz resonators based on interval model. SCIENCE CHINA Technol Sci 60(3):385–398

    Article  Google Scholar 

  • Xiao Z, Han X, Jiang C et al (2016) An efficient uncertainty propagation method for parameterized probability boxes. Acta Mech 227(3):633–649

    Article  MathSciNet  MATH  Google Scholar 

  • Xiong F F, Xue B, Yan Z (2011a) Polynomial chaos expansion based robust design optimization. IEEE 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, China. pp 868–873

  • Xiong FF, Chen W, Xiong Y et al (2011b) Weighted stochastic response surface method considering sample weights. Struct Multidiscip Optim 43(6):837–849

    Article  Google Scholar 

  • Xiu DB, Karniadakis GE (2002) The wiener--askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644

    Article  MathSciNet  MATH  Google Scholar 

  • Xiu DB, Karniadakis GE (2003) Modeling uncertainty in flow simulations via generalized polynomial chaos. J Comput Phys 187(1):137–167

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang K, Achari G (2010) Uncertainty propagation in environmental decision making using random sets. Procedia Environ Sci 2(1):584

    Google Scholar 

Download references

Funding

Grant support was received from Science Challenge Project (No. TZ2018001) and Hongjian Innovation Foundation (No.BQ203-HYJJ-Q2018002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenfen Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Byeng D Youn

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Replication of results

The results shown in the manuscript can be re-produced. Considering the size limit of the uploaded supplementary material, the codes for one of the mathematical example for UP (Function 1 and Function 2 in Sect. 3.1) is uploaded as supplementary material. For the rest of the examples, it is very easy to implement by changing the response functions and sample points based on the codes provided to obtain the results shown in the manuscript

Electronic supplementary material

ESM 1

(RAR 12.7 kb)

Appendix

Appendix

The correlated statistical moments and the polynomial coefficients for Function 1 (Case 1, ρ = 0.8) in Sect. 3.1 are provided as below.

For this example, the dimension of correlated random variable is 2 and the order of model is set as H = 3. Therefore, there are ten two-dimensional orthogonal polynomial bases with polynomial order on more than 3. The correlated statistical moments that are in the form of matrix in (17) are shown as below:

$$ {P}^{(0)}\left({x}_1,{x}_2\right)=\left[1\right]\left(k=0\right) $$
(21)
$$ {P}^{(1)}\left({x}_1,{x}_2\right)=\left[\begin{array}{cc}{\int}_{x_1,{x}_2\in {\Omega}_c}1\boldsymbol{d}\Gamma \left({x}_1,{x}_2\right)& {\int}_{x_1,{x}_2\in {\Omega}_c}{x}_1\boldsymbol{d}\Gamma \left({x}_1,{x}_2\right)\\ {}0& 1\end{array}\right]\left(k=1\right) $$
(22)
$$ {P}^{(2)}\left({x}_1,{x}_2\right)=\left[\begin{array}{ccc}{\int}_{x_1,{x}_2\in {\varOmega}_c}1\mathrm{d}\varGamma \left({x}_1,{x}_2\right)& {\int}_{x_1,{x}_2\in {\varOmega}_c}{x}_1\mathrm{d}\varGamma \left({x}_1,{x}_2\right)& {\int}_{x_1,{x}_2\in {\varOmega}_c}{x}_2\mathrm{d}\varGamma \left({x}_1,{x}_2\right)\\ {}{\int}_{x_1,{x}_2\in {\varOmega}_c}{x}_1\mathrm{d}\varGamma \left({x}_1,{x}_2\right)& {\int}_{x_1,{x}_2\in {\varOmega}_c}{x_1}^2\mathrm{d}\varGamma \left({x}_1,{x}_2\right)& {\int}_{x_1,{x}_2\in {\varOmega}_c}{x}_1{x}_2\mathrm{d}\varGamma \left({x}_1,{x}_2\right)\\ {}0& 0& 1\end{array}\right]\left(k=2\right) $$
(23)
$$ {P}^{(9)}\left({x}_1,{x}_2\right)=\left[\begin{array}{cccc}{\int}_{x_1,{x}_2\in {\varOmega}_c}1\mathrm{d}\varGamma \left({x}_1,{x}_2\right)& {\int}_{x_1,{x}_2\in {\varOmega}_c}{x}_1\mathrm{d}\varGamma \left({x}_1,{x}_2\right)& \cdots & {\int}_{x_1,{x}_2\in {\varOmega}_c}{x_2}^3\mathrm{d}\varGamma \left({x}_1,{x}_2\right)\\ {}{\int}_{x_1,{x}_2\in {\varOmega}_c}{x}_1\mathrm{d}\varGamma \left({x}_1,{x}_2\right)& {\int}_{x_1,{x}_2\in {\varOmega}_c}{x_1}^2\mathrm{d}\varGamma \left({x}_1,{x}_2\right)& \cdots & {\int}_{x_1,{x}_2\in {\varOmega}_c}{x}_1{x_2}^3\mathrm{d}\varGamma \left({x}_1,{x}_2\right)\\ {}\vdots & \vdots & \vdots & \vdots \\ {}{\int}_{x_1,{x}_2\in {\varOmega}_c}{x}_1{x_2}^2\mathrm{d}\varGamma \left({x}_1,{x}_2\right)& {\int}_{x_1,{x}_2\in {\varOmega}_c}{x_1}^2{x_2}^2\mathrm{d}\varGamma \left({x}_1,{x}_2\right)& \cdots & {\int}_{x_1,{x}_2\in {\varOmega}_c}{x}_1{x_2}^5\mathrm{d}\varGamma \left({x}_1,{x}_2\right)\\ {}0& 0& \cdots & 1\end{array}\right]\left(k=9\right) $$
(24)

Based on the probabilistic distribution information of the correlated input random variables, one can obtain these correlated statistical moments that will be employed in the orthogonal polynomial basis construction. As the correlated statistical moments for k = 0, 1,..., 8 are all part of those for k = 9, only those for k = 9 is given as below:

$$ \left[\begin{array}{cccccccccc}1& 1.0037& 2.0047& 1.0470& 2.0432& 4.0581& 1.1307& 2.1618& 4.1988& 8.2947\\ {}1.0037& 1.0470& 2.0432& 1.1307& 2.1618& 4.1988& 1.2600& 2.3652& 4.5040& 8.7086\\ {}2.0047& 2.0432& 4.0581& 2.1618& 4.1988& 8.2947& 2.3652& 4.5040& 8.7086& 17.1153\\ {}1.0470& 1.1307& 2.1618& 1.2600& 2.3652& 4.5040& 1.4445& 2.6671& 4.9901& 9.4668\\ {}2.0432& 2.1618& 4.1988& 2.3652& 4.5040& 8.7086& 2.6671& 4.9901& 9.4668& 18.2262\\ {}4.0581& 4.1988& 8.2947& 4.5040& 8.7086& 17.1153& 4.9901& 9.4668& 18.2262& 35.6458\\ {}1.1307& 1.2600& 2.3652& 1.4445& 2.6671& 4.9901& 1.6991& 3.0911& 5.6923& 10.6171\\ {}2.1618& 2.3652& 4.5040& 2.6671& 4.9901& 9.4668& 3.0911& 5.6923& 10.6171& 20.0705\\ {}4.1988& 4.5040& 8.7086& 4.9901& 9.4668& 18.2262& 5.6923& 10.6171& 20.0705& 38.4842\end{array}\right]\left(k=9\right) $$
(25)

Correspondingly, the polynomial coefficients of the ten two-dimensional orthogonal polynomial bases are listed as below:

$$ {\displaystyle \begin{array}{l}\left[{p}_0^{(0)}\right]=\left[1\right]\\ {}\left[{p}_0^{(1)},{p}_1^{(1)}\right]=\left[1,-1.0037\right]\\ {}\begin{array}{l}\left[{p}_0^{(2)},{p}_1^{(2)},{p}_2^{(2)}\right]=\left[1,-0.7874,-1.2143\right]\\ {}\left[{p}_0^{(3)},{p}_1^{(3)},\dots {p}_3^{(3)}\right]=\left[\mathrm{1,0.0000},-\mathrm{2.0149,0.9733}\right]\\ {}\begin{array}{l}\left[{p}_0^{(4)},{p}_1^{(4)},\dots {p}_4^{(4)}\right]=\left[1,-0.7601,-1.0339,-\mathrm{0.4550,1.2818}\right]\\ {}\left[{p}_0^{(5)},{p}_1^{(5)},\dots {p}_5^{(5)}\right]=\left[1,-\mathrm{1.5269,0.5869},-\mathrm{2.4795,1.8735,1.5374}\right]\\ {}\begin{array}{l}\left[{p}_0^{(6)},{p}_1^{(6)},\dots {p}_6^{(6)}\right]=\left[\mathrm{1,0.0124},-0.0202,-2.9868,-\mathrm{0.0242,2.8980},-0.8728\right]\\ {}\left[{p}_0^{(7)},{p}_1^{(7)},\dots {p}_7^{(7)}\right]=\left[1,-\mathrm{0.7414,0.0434},-\mathrm{2.1284,0.2956,0.9175,1.9156},-1.2221\right]\\ {}\begin{array}{l}\left[{p}_0^{(8)},{p}_1^{(8)},\dots {p}_8^{(8)}\right]=\left[1,-\mathrm{1.5061,0.5835},-1.0560,-\mathrm{0.8766,1.1998,2.6053},-0.3874,-1.6164\right]\\ {}\left[{p}_0^{(9)},{p}_1^{(9)},\dots {p}_9^{(9)}\right]=\left[1,-\mathrm{2.1648,1.5190},-0.3394,-\mathrm{3.8632,5.6408},-\mathrm{2.0132,4.9097},-3.6227,-2.0516\right]\end{array}\end{array}\end{array}\end{array}\end{array}} $$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Q., Xiong, F., Wang, F. et al. A data-driven polynomial chaos method considering correlated random variables. Struct Multidisc Optim 62, 2131–2147 (2020). https://doi.org/10.1007/s00158-020-02602-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-020-02602-7

Keywords

Navigation