Skip to main content
Log in

On three concepts in robust design optimization: absolute robustness, relative robustness, and less variance

  • Educational Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper provides a clear perspective on existing several different approaches to robust design optimization of structures. We primarily consider three approaches: the worst-case optimization, the discrepancy (i.e., the maximum gap between the objective values in a nominal case and a possibly occurring case) minimization, and the variance minimization. Some other formulations can also be linked with one of these three approaches. To investigate how the solutions derived by these three approaches differ from each other, we present two numerical examples. This direct comparison clarifies different features of these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Notes

  1. It should be clear again that, in general, \(\hat {x}_{\text {b}}^{\prime }\) is different both from \(x^{*}_{\text {b}}\) and \(\hat {x}_{\text {b}}\).

  2. Semidefinite programming (SDP) is the optimization of a linear objective function under a linear matrix inequality. Namely, it has the form

    $$ \begin{array}{@{}rcl@{}} &&{\kern-.7pc} \text{{Minimize}} {\quad} \sum\limits_{i=1}^{m} b_{i} y_{i} \\ && {\kern-.7pc}\text{{subject~to}}\quad \sum\limits_{i=1}^{m} x_{i} A_{i} + C \succeq 0 , \end{array} $$

    where \(A_{1},\dots ,A_{m}\), \(C \in \mathbb {R}^{n \times n}\) are constant symmetric matrices and \(b_{1},\dots ,b_{m} \in \mathbb {R}\) are constants.

  3. The stiffness matrix of a truss satisfies K(x + y) = K(x) + K(y) for any x, yX. Therefore, for any λ ∈ [0, 1], we have

    $$ \begin{array}{@{}rcl@{}} &&{\kern-.6pc}{\pi}(\lambda {\boldsymbol{x}} + (1-\lambda){\boldsymbol{y}};{\boldsymbol{q}} ) \\ &&{\kern-.7pc}= \sup_{{\boldsymbol{u}}} \left\{ 2 {\boldsymbol{q}}^{\top} {\boldsymbol{u}} - \left[ \lambda {\boldsymbol{u}}^{\top} K({\boldsymbol{x}}) {\boldsymbol{u}} + (1-\lambda) {\boldsymbol{u}}^{\top} K({\boldsymbol{y}}) {\boldsymbol{u}} \right] \right\} \\ &&{\kern-.7pc}\le \lambda \sup_{{\boldsymbol{u}}} \{ 2 {\boldsymbol{q}}^{\top} {\boldsymbol{u}} - {\boldsymbol{u}}^{\top} K({\boldsymbol{x}}) {\boldsymbol{u}} \} + (1-\lambda) \sup_{{\boldsymbol{u}}} \{ 2 {\boldsymbol{q}}^{\top} {\boldsymbol{u}} - {\boldsymbol{u}}^{\top} K({\boldsymbol{y}}) {\boldsymbol{u}} \} \\ &&{\kern-.7pc}= \lambda {\pi}({\boldsymbol{x}} ;{\boldsymbol{q}} ) + (1-\lambda) {\pi}({\boldsymbol{y}};{\boldsymbol{q}} ) , \end{array} $$

    which shows the convexity of π(⋅; q). See, e.g., Kanno (2011, Proposition 3.1.2) for more accounts.

  4. Using a vector-valued function as the objective function in (5a) means that this problem is a multi-objective optimization problem (particularly, problem (5a) is a bi-objective optimization problem). That is, we attempt to minimize both \({\pi }(\textit {\textbf {x}}; \tilde {\textit {\textbf {q}}})\) and πworst(x; α). We call xX a Pareto optimal solution of (5a) if there exists no \({\boldsymbol {x}}^{\prime } \in \mathbb {R}^{n}\)\(({\boldsymbol {x}}^{\prime } \not = {\boldsymbol {x}}^{*})\) satisfying \({\pi }({\boldsymbol {x}}^{\prime }; \tilde {{\boldsymbol {q}}}) \le {\pi }({\boldsymbol {x}}^{*}; \tilde {{\boldsymbol {q}}})\) and \({\pi }^{{\text {worst}}}({\boldsymbol {x}}^{\prime }; \alpha ) \le {\pi }^{{\text {worst}}}({\boldsymbol {x}}^{*}; \alpha )\). See, e.g., Boyd and Vandenberghe (2004, Section 4.7) and Chankong et al. (1985) for fundamentals of multi-objective optimization.

  5. We adopt the constraint method (a.k.a. ε-constraint method) for scalarization of multi-objective optimization. Application of standard constraint method converts problem (5a) into problem (6a). See, e.g., Haimes et al. (1971), Haimes and Hall (1974), Cohon and Marks (1974), Hwang et al. (1980), Chankong et al. (1985) for details of the constraint method.

  6. We make use of the equality

    $$ \begin{array}{@{}rcl@{}} &&{\kern-.7pc}\sup\{ {\boldsymbol{x}}^{\top} {\boldsymbol{y}} \mid \| {\boldsymbol{x}} \|_{\infty} \le 1 \} = \sup\{ {\boldsymbol{x}}^{\top} {\boldsymbol{y}} \mid \| {\boldsymbol{x}} \|_{\infty} = 1 \} \\ &&~~~~~{\kern-.7pc}= \sum\limits_{i=1}^{n} \sup\{ x_{i} y_{i} \mid |x_{i}| = 1 \} = \| {\boldsymbol{y}} \|_{1} . \end{array} $$

    Here, ∥⋅∥1 is called the dual norm of \(\| \cdot \|_{\infty }\).

  7. Indeed, for any x, yX and for any λ ∈ [0, 1], we have

    $$ \begin{array}{@{}rcl@{}} &&{\kern-.7pc}{\pi}^{{\text{worst}}}(\lambda {\boldsymbol{x}} + (1-\lambda) {\boldsymbol{y}} ;\alpha) \\ &&~~~~~~{\kern-.7pc}= \sup_{{\boldsymbol{q}} \in Q(\alpha)} \{ {\pi}(\lambda {\boldsymbol{x}} + (1-\lambda) {\boldsymbol{y}} ;{\boldsymbol{q}}) \} \\ &&~~~~~~{\kern-.7pc}\le \sup_{{\boldsymbol{q}} \in Q(\alpha)} \{ \lambda {\pi}({\boldsymbol{x}} ;{\boldsymbol{q}}) + (1-\lambda) {\pi}({\boldsymbol{y}} ;{\boldsymbol{q}}) \} \\ &&~~~~~~{\kern-.7pc}\le \lambda \sup_{{\boldsymbol{q}} \in Q(\alpha)} \{ {\pi}({\boldsymbol{x}} ;{\boldsymbol{q}}) \} + (1-\lambda) \sup_{{\boldsymbol{q}} \in Q(\alpha)} \{ {\pi}({\boldsymbol{y}} ;{\boldsymbol{q}}) \} \\ &&~~~~~~{\kern-.7pc}\le \lambda {\pi}^{{\text{worst}}}({\boldsymbol{x}} ;\alpha) + (1-\lambda) {\pi}^{{\text{worst}}}({\boldsymbol{y}} ;\alpha) , \end{array} $$

    where the first inequality follows the convexity of π(⋅; q). See, e.g., Hiriart-Urruty and Lemaréchal (1993, Proposition IV.2.1.2) for more accounts.

  8. See also Calafiore and Dabbene (2008, Proposition 2).

  9. We have \(\sup \{ {\boldsymbol {x}}^{\top } {\boldsymbol {y}} \mid \| {\boldsymbol {x}} \|_{1} \le 1 \} = \| {\boldsymbol {y}} \|_{\infty }\), because dual of the dual norm is the norm itself; see, e.g., Hiriart-Urruty and Lemaréchal (1993, Proposition V.3.2.1).

  10. DC decomposition of a DC function is not unique. For example, for any convex function \(f : \mathbb {R}^{n} \to \mathbb {R}\), we see that πdisc(⋅; α) can be decomposed as

    $$ \begin{array}{@{}rcl@{}} {\pi}^{{\text{disc}}}({\boldsymbol{x}}; \alpha) = ({\pi}^{{\text{worst}}}({\boldsymbol{x}}; \alpha) + f({\boldsymbol{x}})) - ({\pi}({\boldsymbol{x}}; \tilde{{\boldsymbol{q}}}) + f({\boldsymbol{x}})) , \end{array} $$

    which is also a DC decomposition of πdisc(⋅; α).

  11. Indeed, with the first-order approximation of \({\pi }(\tilde {{\boldsymbol {q}}}+{\boldsymbol {\zeta }})\), (18) follows

    $$ \begin{array}{@{}rcl@{}} {\mathrm{E}}[{\pi}(\tilde{{\boldsymbol{q}}}+{\boldsymbol{\zeta}})] \simeq {\mathrm{E}}[ {\pi}(\tilde{{\boldsymbol{q}}}) + \nabla{\pi}(\tilde{{\boldsymbol{q}}})^{\top} {\boldsymbol{\zeta}} ] = {\pi}(\tilde{{\boldsymbol{q}}}) + \nabla{\pi}(\tilde{{\boldsymbol{q}}})^{\top} {\mathrm{E}}[{\boldsymbol{\zeta}}] \end{array} $$

    and (20) follows

    $$ \begin{array}{@{}rcl@{}} &&{\kern-.7pc}{\text{Var}}[{\pi}(\tilde{{\boldsymbol{q}}}+{\boldsymbol{\zeta}})] \\ &&{\kern-.7pc}~~~~~~~= {\mathrm{E}} \left[ ({\pi}(\tilde{{\boldsymbol{q}}}+{\boldsymbol{\zeta}}) - {\mathrm{E}}[{\pi}(\tilde{{\boldsymbol{q}}}+{\boldsymbol{\zeta}})])^{2} \right] \\ &&{\kern-.7pc}~~~~~~~\simeq {\mathrm{E}} \left[ ({\pi}(\tilde{{\boldsymbol{q}}}) + \nabla{\pi}(\tilde{{\boldsymbol{q}}})^{\top} {\boldsymbol{\zeta}} - {\pi}(\tilde{{\boldsymbol{q}}}))^{2} \right] \\ &&{\kern-.7pc}~~~~~~~= {\mathrm{E}}\left[ \nabla{\pi}(\tilde{{\boldsymbol{q}}})^{\top} ({\boldsymbol{\zeta}} {\boldsymbol{\zeta}}^{\top}) \nabla{\pi}(\tilde{{\boldsymbol{q}}}) \right] \\ &&{\kern-.7pc}~~~~~~~= \nabla{\pi}(\tilde{{\boldsymbol{q}}})^{\top} {\mathrm{E}}\left[ {\boldsymbol{\zeta}} {\boldsymbol{\zeta}}^{\top} \right] \nabla{\pi}(\tilde{{\boldsymbol{q}}}) . \end{array} $$

    Here, the explicit dependency of π on x has been suppressed for notational simplicity.

  12. It is clear that \(\max \limits \{ {\pi }(\textit {\textbf {x}};\textit {\textbf {q}}) \mid \textit {\textbf {q}} \in Q(\alpha ) \}\), as well as \(\min \limits \{ {\pi }({\boldsymbol {x}};{\boldsymbol {q}}) \mid {\boldsymbol {q}} \in Q(\alpha ) \}\), is attained at a point on the boundary of Q(α).

  13. For α = 10kN, there exists almost no difference between the solution with minimal nominal-case compliance and the solution with minimal worst-case compliance.

  14. In the following we assume without loss of generality that the original design optimization problem is formulated as a minimization problem, as the case in the previous sections.

References

  • Alefeld G, Mayer G (2000) Interval analysis: theory and applications. J Comput Appl Math 121:421–464

    MathSciNet  MATH  Google Scholar 

  • Asadpoure A, Tootkaboni M, Guest JK (2011) Robust topology optimization of structures with uncertainties in stiffness—application to truss structures. Comput Struct 89:1131–1141

    Google Scholar 

  • Ben-Haim Y (1994) Fatigue lifetime with load uncertainty represented by convex model. J Eng Mech (ASCE) 120:445–462

    Google Scholar 

  • Ben-Haim Y (1995) A non-probabilistic measure of reliability of linear systems based on expansion of convex models. Struct Saf 17:91–109

    Google Scholar 

  • Ben-Haim Y, Elishakoff I (1990) Convex models of uncertainty in applied mechanics. Elsevier, New York

    MATH  Google Scholar 

  • Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Beyer H-G, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196:3190–3218

    MathSciNet  MATH  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Calafiore GC, Dabbene F (2008) Optimization under uncertainty with applications to design of truss structures. Struct Multidiscip Optim 35:189–200

    MathSciNet  MATH  Google Scholar 

  • Chankong V, Haimes YY, Thadathil J, Zionts S (1985) Multiple criteria optimization; a state of the art review. In: Haimes YY, Chankong V (eds) Decision making with multiple objectives. Springer, Berlin, pp 36–90

  • Chen W, Allen JK, Tsui K-L, Mistree F (1996) A procedure for robust design: minimizing variations caused by noise factors and control factors. J Mech Des 118:478–485

    Google Scholar 

  • Chen W, Fu W, Biggers SB, Latour RA (2000) An affordable approach for robust design of thick laminated composite structure. Optim Eng 1:305–322

    MATH  Google Scholar 

  • Chen S, Lian H, Yang X (2002) Interval static displacement analysis for structures with interval parameters. Int J Numer Methods Eng 53:393–407

    MATH  Google Scholar 

  • Cherkaev E, Cherkaev A (2003) Principal compliance and robust optimal design. J Elast 72:71–98

    MathSciNet  MATH  Google Scholar 

  • Cherkaev E, Cherkaev A (2008) Minimax optimization problem of structural design. Comput Struct 86:1426–1435

    MATH  Google Scholar 

  • Choi JH, Lee WH, Park JJ, Youn BD (2008) A study on robust design optimization of layered plate bonding process considering uncertainties. Struct Multidiscip Optim 35:531–540

    Google Scholar 

  • Cohon JL, Marks DH (1974) A review and evaluation of multiobjective programing techniques. Water Resour Res 11:208–220

    Google Scholar 

  • Collobert R, Sinz F, Weston J, Bottou L (2006) Large scale transductive SVMs. J Mach Learn Res 7:1687–1712

    MathSciNet  MATH  Google Scholar 

  • Cornuéjols G, Pena J, Tütüncü R (2018) Optimization methods in finance, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • da Silva GA, Cardoso EL, Beck AT (2019) Non-probabilistic robust continuum topology optimization with stress constraints. Struct Multidiscip Optim 59:1181–1197

    MathSciNet  Google Scholar 

  • de Gournay F, Allaire G, Jouve F (2008) Shape and topology optimization of the robust compliance via the level set method. ESAIM: Control Optim Calc Var 14:43–70

    MathSciNet  MATH  Google Scholar 

  • Ganzerli S, Pantelides CP (1999) Load and resistance convex models for optimum design. Struct Optim 17:259–268

    Google Scholar 

  • Grant M, Boyd S (2008) Graph implementations for nonsmooth convex programs. In: Blondel V, Boyd S, Kimura H (eds) Recent advances in learning and control (a tribute to M. Vidyasagar). Springer, pp 95–110

  • Grant M, Boyd S (2019) CVX: Matlab software for disciplined convex programming, Ver. 2.1 http://cvxr.com/cvx/ (Accessed: July 2019)

  • Haimes YY, Hall WA (1974) Multiobjectives in water resource systems analysis: the surrogate worth trade off method. Water Resour Res 10:615–624

    Google Scholar 

  • Haimes YY, Lasdon LS, Wismer DA (1971) On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans Syst Man Cybern 1:296–297

    MathSciNet  MATH  Google Scholar 

  • Han JS, Kwak BM (2004) Robust optimization using a gradient index: MEMS applications. Struct Multidiscip Optim 27:469–478

    Google Scholar 

  • Hashimoto D, Kanno Y (2015) A semidefinite programming approach to robust truss topology optimization under uncertainty in locations of nodes. Struct Multidiscip Optim 51:439–461

    MathSciNet  Google Scholar 

  • Hiriart-Urruty J-B, Lemaréchal C (1993) Convex analysis and minimization algorithms, vol I. Springer, Berlin

    MATH  Google Scholar 

  • Holmberg E, Thore C-J, Klarbring A (2015) Worst-case topology optimization of self-weight loaded structures using semi-definite programming. Struct Multidiscip Optim 52:915–928

    MathSciNet  Google Scholar 

  • Huan Z, Zhenghong G, Fang X, Yidian Z (2019) Review of robust aerodynamic design optimization for air vehicles. Arch Comput Methods Eng 26:685–732

    MathSciNet  Google Scholar 

  • Hwang CL, Paidy SR, Yoon K, Masud ASM (1980) Mathematical programming with multiple objectives: a tutorial. Comput Oper Res 7:5–31

    Google Scholar 

  • Ito M, Kogiso N, Hasegawa T (2018) A consideration on robust design optimization problem through formulation of multiobjective optimization. J Adv Mech Des Syst Manuf 12:18–00076

    Google Scholar 

  • Kanno Y (2011) Nonsmooth mechanics and convex optimization. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Kanno Y (2015) A note on formulations of robust compliance optimization under uncertain loads. J Struct Construct Eng (Trans AIJ) 80:601–607

    Google Scholar 

  • Kanno Y (2018) Robust truss topology optimization via semidefinite programming with complementarity constraints: a difference-of-convex programming approach. Comput Optim Appl 71:403–433

    MathSciNet  MATH  Google Scholar 

  • Kanno Y (2019) A data-driven approach to non-parametric reliability-based design optimization of structures with uncertain load. Struct Multidiscip Optim 60:83–97

    MathSciNet  Google Scholar 

  • Keshavarzzadeh V, Fernandez F, Tortorelli DA (2017) Topology optimization under uncertainty via non-intrusive polynomial chaos expansion. Comput Methods Appl Mech Eng 318:120–147

    MathSciNet  MATH  Google Scholar 

  • Kim N-K, Kim D-H, Kim D-W, Kim H-G, Lowther DA, Sykulski JK (2010) Robust optimization utilizing the second-order design sensitivity information. IEEE Trans Magn 46:3117–3120

    Google Scholar 

  • Kitayama S, Yamazaki K (2014) Sequential approximate robust design optimization using radial basis function network. Int J Mech Mater Des 10:313–328

    Google Scholar 

  • Kogiso N, Ahn W-J, Nishiwaki S, Izui K, Yoshimura M (2008) Robust topology optimization for compliant mechanisms considering uncertainty of applied loads. J Adv Mech Des Syst Manuf 2:96–107

    Google Scholar 

  • Kriegesmann B, Lüdeker JK (2019) Robust compliance topology optimization using the first-order second-moment method. Struct Multidiscip Optim 60:269–286

    MathSciNet  Google Scholar 

  • Lee K-H, Park G-J (2006) A global robust optimization using kriging based approximation model. JSME Int J Ser C Mech Syst Mach Element Manuf 49:779–788

    Google Scholar 

  • Le Thi HA, Pham Dinh T (2005) The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann Oper Res 133:23–46

    MathSciNet  MATH  Google Scholar 

  • Le Thi HA, Pham Dinh T (2018) DC Programming and DCA: thirty years of developments. Math Program 169:5–68

    MathSciNet  MATH  Google Scholar 

  • Lipp T, Boyd S (2016) Variations and extension of the convex–concave procedure. Optim Eng 17:263–287

    MathSciNet  MATH  Google Scholar 

  • Luo Y, Kang Z, Luo Z, Li A (2009) Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model. Struct Multidiscip Optim 39:297–310

    MathSciNet  MATH  Google Scholar 

  • Markowitz H (1952) Portfolio selection. J Financ 7:77–91

    Google Scholar 

  • Nakazawa Y, Kogiso N, Yamada T, Nishiwaki S (2016) Robust topology optimization of thin plate structure under concentrated load with uncertain load position. J Adv Mech Des Syst Manuf 10:16–00232

    Google Scholar 

  • Neumaier A, Pownuk A (2007) Linear systems with large uncertainties, with applications to truss structures. Reliab Comput 13:149–172

    MathSciNet  MATH  Google Scholar 

  • Pantelides CP, Ganzerli S (1998) Design of trusses under uncertain loads using convex models. J Struct Eng (ASCE) 124:318–329

    Google Scholar 

  • Park G-J, Lee T-H, Lee KH, Hwang K-H (2006) Robust design: an overview. AIAA J 44:181–191

    Google Scholar 

  • Pólik I (2005) Addendum to the SeDuMi user guide: Version 1.1. Technical Report, Advanced Optimization Laboratory. McMaster University, Hamilton. http://sedumi.ie.lehigh.edu/sedumi/

  • Rao SS, Cao L (2002) Optimum design of mechanical systems involving interval parameters. J Mech Des (ASME) 124:465–472

    Google Scholar 

  • Shimoyama K, Lim JN, Jeong S, Obayashi S, Koishi M (2009) Practical implementation of robust design assisted by response surface approximation and visual data-mining. J Mech Des 131:061007

  • Shin YS, Grandhi RV (2001) A global structural optimization technique using an interval method. Struct Multidiscip Optim 22:351–36

    Google Scholar 

  • Sobieszczanski-Sobieski J, Morris A, van Tooren MJL (2015) Multidisciplinary design optimization supported by knowledge based engineering. Wiley, Chichester

    Google Scholar 

  • Sriperumbudur BK, Lanckriet GRG (2009) On the convergence of the concave-convex procedure. Adv Neural Inf Process Syst 22:1759–1767

    Google Scholar 

  • Sturm JF (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim Methods Softw 11–12:625–653

    MathSciNet  MATH  Google Scholar 

  • Su J, Renaud JE (1997) Automatic differentiation in robust optimization. AIAA J 35:1072–1079

    MATH  Google Scholar 

  • Sun G, Song X, Baek S, Li Q (2014) Robust optimization of foam-filled thin-walled structure based on sequential Kriging metamodel. Struct Multidiscip Optim 49:897–913

    Google Scholar 

  • Takezawa A, Nii S, Kitamura M, Kogiso N (2011) Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system. Comput Methods Appl Mech Eng 200:2268–2281

    MathSciNet  MATH  Google Scholar 

  • Tootkaboni M, Asadpoure A, Guest JK (2012) Topology optimization of continuum structures under uncertainty—a polynomial chaos approach. Comput Methods Appl Mech Eng 201–204:263– 275

    MathSciNet  MATH  Google Scholar 

  • Toyoda M, Kogiso N (2015) Robust multiobjective optimization method using satisficing trade-off method. J Mech Sci Technol 29:1361–1367

    Google Scholar 

  • Valdebenito MA, Schuëller GI (2010) A survey on approaches for reliability-based optimization. Struct Multidiscip Optim 42:645–663

    MathSciNet  MATH  Google Scholar 

  • Yao W, Chen X, Luo W, van Tooren M, Guo J (2011) Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles. Prog Aerosp Sci 47:450–479

    Google Scholar 

  • Yonekura K, Kanno Y (2010) Global optimization of robust truss topology via mixed integer semidefinite programming. Optim Eng 11:355–379

    MathSciNet  MATH  Google Scholar 

  • Yuille AL, Rangarajan A (2003) The concave-convex procedure. Neural Comput 15:915–936

    MATH  Google Scholar 

  • Zang C, Friswell MI, Mottershead JE (2005) A review of robust optimal design and its application in dynamics. Comput Struct 83:315–326

    Google Scholar 

  • Zhang X, He J, Takezawa A, Kang Z (2018a) Robust topology optimization of phononic crystals with random field uncertainty. Int J Numer Methods Eng 115:1154–1173

    MathSciNet  Google Scholar 

  • Zhang W, Kang Z (2017) Robust shape and topology optimization considering geometric uncertainties with stochastic level set perturbation. Int J Numer Methods Eng 110:31–56

    MathSciNet  MATH  Google Scholar 

  • Zhang Y, Li X, Guo S (2018b) Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature. Fuzzy Optim Decis Making 17:125–158

    MathSciNet  MATH  Google Scholar 

  • Zhao Z, Han X, Jiang C, Zhou X (2010) A nonlinear interval-based optimization method with local-densifying approximation technique. Struct Multidiscip Optim 42:559–573

    Google Scholar 

Download references

Funding

The work described in this paper is partially supported by Research Grant from the Maeda Engineering Foundation and JSPS KAKENHI 17K06633.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Kanno.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Responsible Editor: Xiaoping Du

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Replication of results

Source codes for solving the optimization problems presented in Section 5 are available online at https://github.com/ykanno22/relative_robust/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanno, Y. On three concepts in robust design optimization: absolute robustness, relative robustness, and less variance. Struct Multidisc Optim 62, 979–1000 (2020). https://doi.org/10.1007/s00158-020-02503-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-020-02503-9

Keywords

Navigation