Skip to main content
Log in

A novel approach to uncertainty analysis using methods of hybrid dimension reduction and improved maximum entropy

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Methods of uncertainty analysis based on statistical moments are more convenient than methods that use a Taylor series expansion because the moments methods require neither an iteration process to locate the most probable point nor the computation of derivatives of the performance function. However, existing moments estimation methods are either computationally expensive (e.g., the full factorial numerical integration method) or produce large errors (e.g., the univariate dimension-reduction method). In this paper, a hybrid dimension-reduction method taking account of interactions among variables is presented for estimating the probability moments of the system performance function. In this method, a contribution-degree analysis with finite changes is implemented to identify the relative importance of the input variables on the output. Then, an approximate performance function is generated with the hybrid dimension-reduction method that is based on the results of contribution-degree analysis. Finally, the statistical moments of the performance function can be calculated from the approximate performance function. Once the probability moments are obtained, an improved maximum entropy method is used to generate the probability density function of the performance function. The uncertainty analysis can be implemented by using the approximation probability density function. Five illustrative numerical examples are presented, and different methods are compared in those examples. The statistical moments estimation results reveal that the proposed moments estimation method can dramatically improve efficiency and also guarantee accuracy. Compared with the other probability density function approximation methods, our improved maximum entropy method, using more statistical moments, is more accurate and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abramov RV (2009) The multidimensional moment-constrained maximum entropy problem: a BFGS algorithm with constraint scaling. J Comput Phys 228(1):96–108

    MathSciNet  MATH  Google Scholar 

  • Abramov RV (2010) The multidimensional maximum entropy moment problem: a review of numerical methods. Commun Math Sci 8(2):377–392

    MathSciNet  MATH  Google Scholar 

  • Abramowitz M, Stegun IA, Romer RH (1966) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Phys Today 19(1):120–121

    Google Scholar 

  • Acar E, Raisrohani M, Eamon C (2010) Reliability estimation using dimension reduction and extended generalized lambda distribution. Int J Reliab Saf 4(2–3):166–187

    Google Scholar 

  • Apostolakis G (1990) The concept of probability in safety assessments of technological systems. Science 250(4986):1359–1364

    Google Scholar 

  • Bandyopadhyay K, Bhattacharya AK, Biswas P et al (2005) Maximum entropy and the problem of moments: a stable algorithm. Phys Rev E 71(5):057701

    Google Scholar 

  • Borgonovo E (2010) Sensitivity analysis with finite changes: an application to modified EOQ models. Eur J Oper Res 200(1):127–138

    MathSciNet  MATH  Google Scholar 

  • Cai CH, Lu ZH, Xu J et al (2018) Efficient algorithm for evaluation of statistical moments of performance functions. J Eng Mech 145(1):06018007

    Google Scholar 

  • Chowdhury R, Rao BN (2009) Hybrid high dimensional model representation for reliability analysis. Comput Methods Appl Mech Eng 198(5–8):753–765

    MATH  Google Scholar 

  • Chowdhury R, Rao BN, Prasad AM (2009) High-dimensional model representation for structural reliability analysis. Commun Numer Methods Eng 25(4):301–337

    MathSciNet  MATH  Google Scholar 

  • Du X, Sudjianto A, Chen W (2004) An integrated framework for optimization under uncertainty using inverse reliability strategy. J Mech Des 126(4):562–570

    Google Scholar 

  • Fan H, Li W (2008) An efficient method for reliability-based multidisciplinary design optimization. Chin J Aeronaut 21(4):335–340

  • Fan W, Wei J, Ang HS et al (2016) Adaptive estimation of statistical moments of the responses of random systems. Probab Eng Mech 43:50–67

    Google Scholar 

  • Gautschi W (1994) Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and gauss-type quadrature rules. ACM Trans Math Softw 20(1):21–62

    MATH  Google Scholar 

  • Giraud L, Langou J, Rozloznik M (2005) The loss of orthogonality in the Gram-Schmidt orthogonalization process. Comput Math Appl 50(7):1069–1075

    MathSciNet  MATH  Google Scholar 

  • Gotovac H, Gotovac B (2009) Maximum entropy algorithm with inexact upper entropy bound based on Fup basis functions with compact support. J Comput Phys 228(24):9079–9091

    MathSciNet  MATH  Google Scholar 

  • Gzyl H, Tagliani A (2010) Hausdorff moment problem and fractional moments. Appl Math Comput 216(11):3319–3328

    MathSciNet  MATH  Google Scholar 

  • Hao W, Harlim J (2018) An equation-by-equation method for solving the multidimensional moment constrained maximum entropy problem. Commun Appl Math Comput Sci 13(2):189–214

    MathSciNet  MATH  Google Scholar 

  • Huang B, Du X (2006a) Uncertainty analysis by dimension reduction integration and saddlepoint approximations. J Mech Des 128(1):1143–1152

    Google Scholar 

  • Huang B, Du X (2006b) A saddlepoint approximation based simulation method for uncertainty analysis. Int J Reliab Saf 1(1/2):206–224

    MathSciNet  Google Scholar 

  • Huang B, Du X (2008) Probabilistic uncertainty analysis by mean-value first order saddlepoint approximation. Reliab Eng Syst Saf 93(2):325–336

    Google Scholar 

  • Huang X, Zhang Y, Jin Y et al (2011) An improved decomposition method in probabilistic analysis using Chebyshev approximations. Struct Multidiscip Optim 43(6):785–797

    Google Scholar 

  • Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions. Wiley, New York

    MATH  Google Scholar 

  • Keshtegar B (2017) A hybrid conjugate finite-step length method for robust and efficient reliability analysis. Appl Math Model 45:226–237

    MathSciNet  Google Scholar 

  • Keshtegar B, Meng Z (2017) A hybrid relaxed first-order reliability method for efficient structural reliability analysis. Struct Saf 66:84–93

    Google Scholar 

  • Lakhany A, Mausser H (2000) Estimating the parameters of the generalized lambda distribution. Algo Res Q 3(3):47–58

    Google Scholar 

  • Lee SH, Chen W (2009) A comparative study of uncertainty propagation methods for black-box-type problems. Struct Multidiscip Optim 37(3):239–253

    Google Scholar 

  • Lee SH, Choi HS, Kwak BM (2008) Multilevel design of experiments for statistical moment and probability calculation. Struct Multidiscip Optim 37(1):57–70

    Google Scholar 

  • Lee SH, Chen W, Kwak BM (2009) Robust design with arbitrary distributions using Gauss-type quadrature formula. Struct Multidiscip Optim 39(3):227–243

    MathSciNet  MATH  Google Scholar 

  • Li G, He W, Zeng Y (2018) An improved maximum entropy method via fractional moments with Laplace transform for reliability analysis. Struct Multidiscip Optim:1–20

  • Liu HB, Jiang C, Jia XY et al (2018) A new uncertainty propagation method for problems with parameterized probability-boxes. Reliab Eng Syst Saf 172:64–73

    Google Scholar 

  • Low YM (2013) A new distribution for fitting four moments and its applications to reliability analysis. Struct Saf 42(3):12–25

    Google Scholar 

  • Luo K, Du X (2013) Probabilistic mechanism analysis with bounded random dimension variables. Mech Mach Theory 60(1):112–121

    Google Scholar 

  • Mead LR, Papanicolaou N (1984) Maximum entropy in the problem of moments. J Math Phys 25(8):2404–2417

    MathSciNet  Google Scholar 

  • Meng D, Huang HZ, Wang Z et al (2014) Mean-value first-order saddlepoint approximation based collaborative optimization for multidisciplinary problems under aleatory uncertainty. J Mech Sci Technol 28(10):3925–3935

    Google Scholar 

  • Mohammadi M, Shayegani A, Adaminejad H (2013) A new approach of point estimate method for probabilistic load flow. Int J Electr Power Energy Syst 51(10):54–60

    Google Scholar 

  • Nikolaidis E, Chen S, Cudney H, Hatftka RT, Rosca R (2004) Comparison of probability and possibility for design against catastrophic failure under uncertainty. ASME J Mech Des 126(3):386–394

    Google Scholar 

  • Padulo M, Campobasso M S, Guenov M D(2007) Comparative analysis of uncertainty propagation methods for robust engineering design. International Conference on Engineering Design, Pairs, France

  • Pearson K (1916) Mathematical contributions to the theory of evolution.—XIX. Second supplement to a memoir on skew variation. Philos Trans R Soc Lond Ser A 216(538–548):429–457

    MATH  Google Scholar 

  • Rabitz H, Aliş ÖF (1999) General foundations of high-dimensional model representations. J Math Chem 25(2–3):197–233

    MathSciNet  MATH  Google Scholar 

  • Rackwitz R (2001) Reliability analysis—a review and some perspectives. Struct Saf 23(4):365–395

    Google Scholar 

  • Rahman S, Xu H (2004) A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probab Eng Mech 19(4):393–408

    Google Scholar 

  • Rajan A, Ye CK, Ooi PL et al (2017) Moments and maximum entropy method for expanded uncertainty estimation in measurements. IEEE International Instrumentation and Measurement Technology Conference, 1–6

  • Rajan A, Kuang YC, Ooi PL et al (2018) Moment-constrained maximum entropy method for expanded uncertainty evaluation. IEEE Access 6:4072–4082

    Google Scholar 

  • Schöbi R, Sudret B, Marelli S (2016) Rare event estimation using polynomial-chaos kriging. ASCE-ASME J Risk Uncertain Eng Syst A Civ Eng 3(2):D4016002

    Google Scholar 

  • Seo HS, Kwak BM (2002) Efficient statistical tolerance analysis for general distributions using three-point information. Int J Prod Res 40(4):931–944

    MATH  Google Scholar 

  • Sobol IM (2003) Theorems and examples on high dimensional model representation. Reliab Eng Syst Saf 79(2):187–193

    Google Scholar 

  • Thély M, Sutter T, Esfahani PM et al (2017) Maximum entropy estimation via Gauss-LP quadratures. IFAC-Pap OnLine 50(1):10470–10475

    Google Scholar 

  • Tunga MA, Demiralp M (2006) Hybrid high dimensional model representation (HHDMR) on the partitioned data. J Comput Appl Math 185(1):107–132

    MathSciNet  MATH  Google Scholar 

  • Xi Z, Hu C, Youn BD (2012) A comparative study of probability estimation methods for reliability analysis. Struct Multidiscip Optim 45(1):33–52

    MathSciNet  MATH  Google Scholar 

  • Xiao NC, Li YF, Yu L et al (2014) Saddlepoint approximation-based reliability analysis method for structural systems with parameter uncertainties. Proc Inst Mech Eng O J Risk Reliab 228(5):529–540

    Google Scholar 

  • Xiong F, Greene S, Chen W et al (2010) A new sparse grid based method for uncertainty propagation. Struct Multidiscip Optim 41(3):335–349

    MathSciNet  MATH  Google Scholar 

  • Xu J, Dang C (2019) A new bivariate dimension reduction method for efficient structural reliability analysis. Mech Syst Signal Process (115):281–300

    Google Scholar 

  • Xu J, Kong F (2018) An efficient method for statistical moments and reliability assessment of structures. Struct Multidiscip Optim 58(5):2019–2035

    MathSciNet  Google Scholar 

  • Xu J, Kong F (2019) Adaptive scaled unscented transformation for highly efficient structural reliability analysis by maximum entropy method. Struct Saf 76:123–134

    Google Scholar 

  • Xu H, Rahman S (2004) A generalized dimension-reduction method for multi-dimensional integration in stochastic mechanics. Int J Numer Methods Eng 61(12):1992–2019

    MATH  Google Scholar 

  • Xu J, Dang C, Kong F (2017) Efficient reliability analysis of structures with the rotational quasi-symmetric point- and the maximum entropy methods. Mech Syst Signal Process 95:58–76

    Google Scholar 

  • Youn BD, Wang P (2008) Bayesian reliability-based design optimization using eigenvector dimension reduction (EDR) method. Struct Multidiscip Optim 36(2):107–123

    Google Scholar 

  • Youn B, Xi Z, Wang P (2008) Eigenvector dimension reduction (EDR) method for sensitivity-free probability analysis. Struct Multidiscip Optim 37(1):13–28

    MathSciNet  MATH  Google Scholar 

  • Zhang J, Du X (2010) A second-order reliability method with first-order efficiency. J Mech Des 132(10):101006

    Google Scholar 

  • Zhang Z, Jiang C, Wang GG et al (2015) First and second order approximate reliability analysis methods using evidence theory. Reliab Eng Syst Saf 137:40–49

    Google Scholar 

  • Zhao YG, Ono T (2000) New point estimates for probability moments. J Eng Mech 126(4):433–436

    Google Scholar 

  • Zhao Y, Zhang X, Lu Z et al (2018a) Complete monotonic expression of the fourth-moment normal transformation for structural reliability. Comput Struct:186–199

    Google Scholar 

  • Zhao YG, Zhang XY, Lu ZH et al (2018b) A flexible distribution and its application in reliability engineering. Reliab Eng Syst Saf 176:1–12

    Google Scholar 

  • Zhou Q, Li Z, Fan W et al (2017) System reliability assessment of deteriorating structures subjected to time-invariant loads based on improved moment method. Struct Saf 68:54–64

    Google Scholar 

Download references

Acknowledgments

We acknowledge TopEdit LLC for the linguistic editing and proofreading during the preparation of this manuscript.

Funding

This study is supported by the National Natural Science Foundation of China (Grant No. 51275024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Byeng D Youn

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

If the number of variables N is odd, considering a situation for all of the random variablex = [{x1, x2}, {x3, x4}, ⋯, {xN − 1, xN}], the{xi, xj} means variables xi and xj have interaction and the variable xN has no interaction with other variables. The function y(x) can be approximated as

$$ {\displaystyle \begin{array}{c}\mathrm{y}\left(\mathbf{x}\right)=\hat{\mathrm{y}}\left(\mathbf{x}\right)={y}^1\left({x}_1,{x}_2\right)+{y}^2\left({x}_3,{x}_4\right),+\cdots +{y}^o\left({x}_{N-1},{x}_N\right)\\ {}-\left(\frac{N}{2}-1\right)y\left(\boldsymbol{\upmu} \right)\kern1.1em o=1,\cdots, N/2\end{array}} $$
(64)

Without loss of generality, the entire interaction situations {xi, xj} can generate a series of combinations as follows.

$$ \Big\{{\displaystyle \begin{array}{l}{\hat{\mathbf{x}}}_1=\left[\left\{{x}_{1,1},{x}_{1,2}\right\},\left\{{x}_{1,3},{x}_{1,4}\right\},\cdots, \left\{{x}_{1,N-1},{x}_{1,N}\right\}\right]\\ {}{\hat{\mathbf{x}}}_2=\left[\left\{{x}_{2,1},{x}_{2,2}\right\},\left\{{x}_{2,3},{x}_{2,4}\right\},\cdots, \left\{{x}_{2,N-1},{x}_{2,N}\right\}\right]\\ {}\vdots \\ {}{\hat{\mathbf{x}}}_k=\left[\left\{{x}_{k,1},{x}_{k,2}\right\},\left\{{x}_{k,3},{x}_{k,4}\right\},\cdots, \left\{{x}_{k,N-1},{x}_{k,N}\right\}\right]\end{array}} $$
(65)

In (65), each combination ^i(i = 1, ⋯, k) contains all of the variables of x and each variable without repetition. It means that each combination contains all of the variables of x and all terms are mutually independent. The entire interaction situations {xi, xj} can be contained in those combinations without repetition.

According to (64) and (65), a series of approximation functions can be achieved:

$$ \Big\{{\displaystyle \begin{array}{l}{\hat{\mathrm{y}}}_1\left({\hat{\mathbf{x}}}_1\right)=y\left({x}_{1,1},{x}_{1,2}\right)+y\left({x}_{1,3},{x}_{1,4}\right)+\cdots +y\left({x}_{1,N-1},{x}_{1,N}\right)\\ {}-\left(\frac{N}{2}-1\right)y\left(\boldsymbol{\upmu} \right)\\ {}{\hat{\mathrm{y}}}_2\left({\hat{\mathbf{x}}}_2\right)=y\left({x}_{2,1},{x}_{2,2}\right)+y\left({x}_{2,3},{x}_{2,4}\right)+\cdots +y\left({x}_{2,N-1},{x}_{2,N}\right)\\ {}-\left(\frac{N}{2}-1\right)y\left(\boldsymbol{\upmu} \right)\\ {}\vdots \\ {}{\hat{\mathrm{y}}}_k\left({\hat{\mathbf{x}}}_{\mathrm{k}}\right)=y\left({x}_{k,1},{x}_{k,2}\right)+y\left({x}_{k,3},{x}_{k,4}\right)+\cdots +y\left({x}_{k,N-1},{x}_{k,N}\right)\\ {}-\left(\frac{N}{2}-1\right)y\left(\boldsymbol{\upmu} \right)\end{array}} $$
(66)

According (66) and (2), the function y(x)can be approximated as

$$ y\left(\mathbf{x}\right)\cong \sum \limits_{i=1}^k{\hat{y}}_i\left({\hat{\mathbf{x}}}_i\right)-\left(N-2\right){\hat{y}}_{UDR}\left(\mathbf{x}\right) $$
(67)

Appendix 2

Because x = [{x1, x2}, {x3, x4}, ⋯, {xN − 2, xN − 1}, {xN}], each term is independent and each term of the right side in (3)is mutually independent.

The first central moment refers to the expected value

$$ {\displaystyle \begin{array}{l}{\mu}_y=E\left[y(x)\right]=E\left[{y}^1+{y}^2+\cdots +{y}^o+{y}^{\prime }-\frac{N-1}{2}{y}^{\mu}\right]\\ {}=\sum \limits_{i=1}^o{\mu}_{y^i}+{\mu}_{y^{\prime }}-\frac{N-1}{2}{y}^{\mu}\end{array}} $$
(68)

where yi and yμ are functions yi() and y(μ), respectively.

The second order central moment is

$$ {\displaystyle \begin{array}{l}{\sigma}_y^2=E\left[{\left(y(x)-{\mu}_y\right)}^2\right]=E\left[{\left(\left({y}^1+{y}^2+\cdots +{y}^o+y\prime -\frac{N-1}{2}{y}^{\mu}\right)-{\mu}_y\right)}^2\right]\\ {}=E\left[{\left(\left({y}^1+{y}^2+\cdots +{y}^o+y\prime -\frac{N-1}{2}{y}^{\mu}\right)-\left(\sum \limits_{i=1}^o{\mu}_{y^i}+{\mu}_{y^{\prime }}-\frac{N-1}{2}{y}^{\mu}\right)\right)}^2\right]\\ {}=E\left[{\left(\sum \limits_{i=1}^o\left({y}^i-{\mu}_{y^i}\right)+\left(y\prime -{\mu}_{y^{\prime }}\right)\right)}^2\right]\\ {}=E\left[\sum \limits_{i=1}^o{\left({y}^i-{\mu}_{y^i}\right)}^2+{\left(y\prime -{\mu}_{y^{\prime }}\right)}^2+2\left(y^{\prime }-{\mu}_{y^{\prime }}\right)\sum \limits_{i=1}^o\left({y}^i-{\mu}_{y^i}\right)+2\sum \limits_{1\le i<j\le o}\left({y}^i-{\mu}_{y^i}\right)\left({y}^j-{\mu}_{y^j}\right)\right]\\ {}=\sum \limits_{i=1}^oE\left[{\left({y}^i-{\mu}_{y^i}\right)}^2\right]+E\left[\left[{\left(y\prime -{\mu}_{y^{\prime }}\right)}^2\right]+2E\left[\left(y^{\prime }-{\mu}_{y^{\prime }}\right)\right]\sum \limits_{i=1}^oE\right[\left(\left({y}^i-{\mu}_{y^i}\right)\right]+2\sum \limits_{1\le i<j\le o}E\left[\left({y}^i-{\mu}_{y^i}\right)\right]E\left[\left({y}^j-{\mu}_{y^j}\right)\right]=\sum \limits_{i=1}^o{\sigma}_{y^i}^2+{\sigma}_{y^{\prime}}^2\end{array}} $$
(69)

The third order central moment is

$$ {\displaystyle \begin{array}{l}{M}_y^3=E\left[{\left(y(x)-{\mu}_y\right)}^3\right]\\ {}=E\left[{\left(\sum \limits_{i=1}^o\left({y}^i-{\mu}_{y^i}\right)+\left(y\prime -{\mu}_{y^{\prime }}\right)\right)}^3\right]\\ {}=E\left[{\left(\sum \limits_{i=1}^o\left({y}^i-{\mu}_{y^i}\right)\right)}^3+{\left(y\prime -{\mu}_{y^{\prime }}\right)}^3+3{\left(y\prime -{\mu}_{y^{\prime }}\right)}^2\sum \limits_{i=1}^o\left({y}^i-{\mu}_{y^i}\right)+3\left(y^{\prime }-{\mu}_{y^{\prime }}\right){\left(\sum \limits_{i=1}^o\left({y}^i-{\mu}_{y^i}\right)\right)}^2\right]\\ {}=\sum \limits_{i=1}^oE\left[{\left({y}^i-{\mu}_{y^i}\right)}^3\right]+E\left[{\left(y\prime -{\mu}_{y^{\prime }}\right)}^3\right]+3E\left[{\left(y\prime -{\mu}_{y^{\prime }}\right)}^2\right]\sum \limits_{i=1}^oE\left[\left({y}^i-{\mu}_{y^i}\right)\right]+3E\left[\left(y^{\prime }-{\mu}_{y^{\prime }}\right)\right]E\left[{\left(\sum \limits_{i=1}^o\left({y}^i-{\mu}_{y^i}\right)\right)}^2\right]\\ {}=\sum \limits_{i=1}^o{M}_{y^i}^3+{M}_{y^{\prime}}^3\end{array}} $$
(70)

The fourth-order central moment is

$$ {\displaystyle \begin{array}{l}{M}_y^4=E\Big[\left[{\left(y(x)-{\mu}_y\right)}^4\right]\\ {}=E\left[{\left(\sum \limits_{i=1}^o\left({y}^i-{\mu}_{y^i}\right)+\left(y\prime -{\mu}_{y^{\prime }}\right)\right)}^4\right]\\ {}=E\left[{\left(\sum \limits_{i=1}^o\left({y}^i-{\mu}_{y^i}\right)\right)}^4+{\left(y\prime -{\mu}_{y^{\prime }}\right)}^4+4{\left(y\prime -{\mu}_{y^{\prime }}\right)}^3\sum \limits_{i=1}^o\left({y}^i-{\mu}_{y^i}\right)+4\left(y^{\prime }-{\mu}_{y^{\prime }}\right){\left(\sum \limits_{i=1}^o\left({y}^i-{\mu}_{y^i}\right)\right)}^3+6{\left(y\prime -{\mu}_{y^{\prime }}\right)}^2{\left(\sum \limits_{i=1}^o\left({y}^i-{\mu}_{y^i}\right)\right)}^2\right]\\ {}=\sum \limits_{i=1}^oE\left[{\left({y}^i-{\mu}_{y^i}\right)}^4\right]+E\Big[\left[{\left(y\prime -{\mu}_{y^{\prime }}\right)}^4\right]+4E\left[{\left(y\prime -{\mu}_{y^{\prime }}\right)}^3\right]\sum \limits_{i=1}^oE\left[\left({y}^i-{\mu}_{y^i}\right)\right]\\ {}+4E\left[\left(y^{\prime }-{\mu}_{y^{\prime }}\right)\right]E\Big[\left[{\left(\sum \limits_{i=1}^o\left({y}^i-{\mu}_{y^i}\right)\right)}^3\right]+6E\left[{\left(y\prime -{\mu}_{y^{\prime }}\right)}^2\right]E\left[{\left(\sum \limits_{i=1}^o\left({y}^i-{\mu}_{y^i}\right)\right)}^2\right]\\ {}+6\sum \limits_{1\le i<j\le o}E\left[{\left({y}^i-{\mu}_{y^i}\right)}^2\right]E\left[{\left({y}^j-{\mu}_{y^j}\right)}^2\right]\\ {}=\sum \limits_{i=1}^o{M}_{y^i}^4+{M}_{y^{\prime}}^4+6{\sigma}_{y^{\prime}}^2\sum \limits_{i=1}^o{\sigma}_{y^i}^2+6\sum \limits_{1\le i<j\le o}{\sigma}_{y^i}^2{\sigma}_{y^j}^2\end{array}} $$
(71)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhou, P., Liu, Y. et al. A novel approach to uncertainty analysis using methods of hybrid dimension reduction and improved maximum entropy. Struct Multidisc Optim 60, 1841–1866 (2019). https://doi.org/10.1007/s00158-019-02294-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-019-02294-8

Keywords

Navigation