Skip to main content

Advertisement

Log in

Crashworthiness optimisation of a composite energy-absorbing structure for subway vehicles based on hybrid particle swarm optimisation

  • INDUSTRIAL APPLICATION
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

To improve the crashworthiness of subway vehicles, a composite energy-absorbing structure (EAS) is designed by coupling a thin-walled metal tube and aluminium honeycomb structures. On this basis, the effectiveness of the composite structure and aluminium honeycomb finite element model (FEM) is validated by conducting trolley impact tests and quasi-static compression experiments. Based on the verified FEM, the surrogate models, including polynomial response surface (PRS), Kriging, radial basis function (RBF) and supported vector regression (SVR), are established to get the relationship between crashworthiness indexes and design variables. Then, the most accurate model is employed for crashworthiness optimisation through comparing the accuracies of these four models. Owing to the mutually effects among components of the composite EAS and the relatively complex mathematical formulae acquired by the high-precision surrogate model, a hybrid particle swarm optimisation (HPSO) algorithm is put forward. The performance of the HPSO is tested by a typical engineering optimisation case. The results indicate that the HPSO algorithm presents various advantages (e.g. strong global search capability, high optimisation accuracy, etc.). By optimising the mathematical model of the composite EAS, the optimal configurations of the structure are obtained, which confirms that the HPSO algorithm has favourable applicability and performance in the crashworthiness optimisation of the EASs for subway vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alavi Nia A, Fallah Nejad K, Badnava H, Farhoudi HR (2012) Effects of buckling initiators on mechanical behavior of thin-walled square tubes subjected to oblique loading. Thin-Walled Struct 59:87–96

    Article  Google Scholar 

  • Alavi Nia A, Parsapour M (2013) An investigation on the energy absorption characteristics of multi-cell square tubes. Thin-Walled Struct 68:26–34

    Article  Google Scholar 

  • Arasomwan MA, Adewumi AO (2013) On the performance of linear decreasing inertia weight particle swarm optimization for global optimization. Sci World J 2013:1–12

    Article  Google Scholar 

  • Baroutaji A, Gilchrist MD, Smyth D, Olabi AG (2015) Crush analysis and multi-objective optimization design for circular tube under quasi-static lateral loading. Thin-Walled Struct 86:121–131

    Article  Google Scholar 

  • Chen S, Yu H, Fang J (2018) A novel multi-cell tubal structure with circular corners for crashworthiness. Thin-Walled Struct 122:329–343

    Article  Google Scholar 

  • Chen Y, Bai Z, Zhang L, Wang Y, Sun G, Cao L (2017) Crashworthiness analysis of octagonal multi-cell tube with functionally graded thickness under multiple loading angles. Thin-Walled Struct 110:133–139

    Article  Google Scholar 

  • Clarke SM, Griebsch JH, Simpson TW (2005) Analysis of support vector regression for approximation of complex engineering analyses. J Mech Des 127:1077–1086

    Article  Google Scholar 

  • Coello Coello CA, Mezura Montes E (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform 16(3):193–203

    Article  Google Scholar 

  • Djamaluddin F, Abdullah S, Ariffin AK, Nopiah ZM (2015) Optimization of foam-filled double circular tubes under axial and oblique impact loading conditions. Thin-Walled Struct 87:1–11

    Article  Google Scholar 

  • Duddeck F, Hunkeler S, Lozano P, Wehrle E, Zeng D (2016) Topology optimization for crashworthiness of thin-walled structures under axial impact using hybrid cellular automata. Struct Multidiscip Optim 54(3):415–428

    Article  Google Scholar 

  • Esfahlani SS, Shirvani H, Nwaubani S, Shirvani A, Mebrahtu H (2013) Comparative study of honeycomb optimization using kriging and radial basis function. Theor Appl Mech Lett 3(3):1–5

    Article  Google Scholar 

  • Fazilati J, Alisadeghi M (2016) Multiobjective crashworthiness optimization of multi-layer honeycomb energy absorber panels under axial impact. Thin-Walled Struct 107:197–206

    Article  Google Scholar 

  • Forsberg J, Nilsson L (2005) On polynomial response surfaces and kriging for use in structural optimization of crashworthiness. Struct Multidiscip Optim 29(3):232–243

    Article  Google Scholar 

  • Gao Q, Zhao X, Wang C, Wang L, Ma Z (2018) Multi-objective crashworthiness optimization for an auxetic cylindrical structure under axial impact loading. Mater Des 143:120–130

    Article  Google Scholar 

  • Hallquist JO (2006) LS-DYNA theory manual. Livermore Software Technology Corporation, California

  • Huang F, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186(1):340–356

    MathSciNet  MATH  Google Scholar 

  • Hussein RD, Ruan D, Lu G, Guillow S, Yoon JW (2017) Crushing response of square aluminium tubes filled with polyurethane foam and aluminium honeycomb. Thin-Walled Struct 110:140–154

    Article  Google Scholar 

  • Kohar CP, Mohammadi M, Mishra RK, Inal K (2015) Effects of elastic–plastic behaviour on the axial crush response of square tubes. Thin-Walled Struct 93:64–87

    Article  Google Scholar 

  • Li Z, Duan L, Chen T, Hu Z (2018) Crashworthiness analysis and multi-objective design optimization of a novel lotus root filled tube (LFT). Struct Multidiscip Optim 57(2):865–875

    Article  Google Scholar 

  • Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579

    MathSciNet  MATH  Google Scholar 

  • Peng Y, Deng W, Xu P, Yao S (2015) Study on the collision performance of a composite energy-absorbing structure for subway vehicles. Thin-Walled Struct 94:663–672

    Article  Google Scholar 

  • Peng Y, Wang S, Yao S, Xu P (2017) Crashworthiness analysis and optimization of a cutting-style energy absorbing structure for subway vehicles. Thin-Walled Struct 120:225–235

    Article  Google Scholar 

  • Simpson TW, Mauery TM, Korte JJ, Mistree F (2015) Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA J 39(12):2233–2241

    Article  Google Scholar 

  • Song X, Sun G, Li G, Gao W, Li Q (2013) Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models. Struct Multidiscip Optim 47(2):221–231

    Article  MathSciNet  Google Scholar 

  • Sun G, Huo X, Chen D, Li Q (2017a) Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression. Mater Des 133:154–168

    Article  Google Scholar 

  • Sun G, Li G, Gong Z, He G, Li Q (2011) Radial basis functional model for multi-objective sheet metal forming optimization. Eng Optim 43(12):1351–1366

    Article  MathSciNet  Google Scholar 

  • Sun G, Li G, Stone M, Li Q (2010) A two-stage multi-fidelity optimization procedure for honeycomb-type cellular materials. Comput Mater Sci 49(3):500–511

    Article  Google Scholar 

  • Sun G, Li S, Liu Q, Li G, Li Q (2016) Experimental study on crashworthiness of empty/aluminum foam/honeycomb-filled CFRP tubes. Compos Struct 152:969–993

    Article  Google Scholar 

  • Sun G, Zhang H, Fang J, Li G, Li Q (2017b) Multi-objective and multi-case reliability-based design optimization for tailor rolled blank (TRB) structures. Struct Multidiscip Optim 55(5):1899–1916

    Article  Google Scholar 

  • Tan Y, Zhu YC (2010) Fireworks algorithm for optimization. In: Tan Y, Shi YH, Tan KC (eds) Lecture notes in computer science. Springer-Verlag Berlin, Berlin, pp 355–364

    Google Scholar 

  • Tsai S, Sun T, Liu C, Hsieh S, Wu W, Chiu S (2010) An improved multi-objective particle swarm optimizer for multi-objective problems. Expert Syst Appl 37(8):5872–5886

    Article  Google Scholar 

  • Wang Z, Tian H, Lu Z, Zhou W (2014) High-speed axial impact of aluminum honeycomb – experiments and simulations. Compos Part B 56:1–8

    Article  Google Scholar 

  • Wang Z, Yao S, Lu Z, Hui D, Feo L (2016) Matching effect of honeycomb-filled thin-walled square tube—experiment and simulation. Compos Struct 157:494–505

    Article  Google Scholar 

  • Xie S, Zhou H (2015) Analysis and optimisation of parameters influencing the out-of-plane energy absorption of an aluminium honeycomb. Thin-Walled Struct 89:169–177

    Article  Google Scholar 

  • Xie S, Li H, Yang W, Wang N (2018) Crashworthiness optimisation of a composite energy-absorbing structure for railway vehicles. Struct Multidiscip Optim 57(4):1793–1807

    Article  Google Scholar 

  • Xie S, Zhou H (2014a) Impact characteristics of a composite energy absorbing bearing structure for railway vehicles. Compos Part B 67:455–463

    Article  Google Scholar 

  • Xie S, Zhou H (2014b) Research on the crashworthy structures of subway vehicles. International Journal of Crashworthiness 19(6):555–566

    Article  Google Scholar 

  • Xie S, Zhou H (2014c) Multi-objective optimisation of a vehicle energy absorption structure based on surrogate model. J Cent South Univ 21(6):2539–2546

    Article  Google Scholar 

  • Xu P, Yang C, Peng Y, Yao S, Xing J, Li B (2016) Cut-out grooves optimization to improve crashworthiness of a gradual energy-absorbing structure for subway vehicles. Mater Des 103:132–143

    Article  Google Scholar 

  • Yamashita M, Gotoh M (2005) Impact behavior of honeycomb structures with various cell specifications—numerical simulation and experiment. International Journal of Impact Engineering 32(1):618–630

    Article  Google Scholar 

  • Yang S, Qi C (2013) Multiobjective optimization for empty and foam-filled square columns under oblique impact loading. International Journal of Impact Engineering 54:177–191

    Article  Google Scholar 

  • Yao S, Xiao X, Xu P, Qu Q, Che Q (2018) The impact performance of honeycomb-filled structures under eccentric loading for subway vehicles. Thin-Walled Struct 123:360–370

    Article  Google Scholar 

  • Yin H, Wen G, Hou S, Qing Q (2013) Multiobjective crashworthiness optimization of functionally lateral graded foam-filled tubes. Mater Des 44:414–428

    Article  Google Scholar 

  • Yin H, Wen G, Liu Z, Qing Q (2014) Crashworthiness optimization design for foam-filled multi-cell thin-walled structures. Thin-Walled Struct 75:8–17

    Article  Google Scholar 

  • Yin H, Xiao Y, Wen G, Qing Q, Deng Y (2015) Multiobjective optimization for foam-filled multi-cell thin-walled structures under lateral impact. Thin-Walled Struct 94:1–12

    Article  Google Scholar 

  • Yong D, Wu C, Guo H (2015) Particle swarm optimization algorithm with adaptive chaos perturbation. Cybernetics and Information Technologies 15(6):70–80

    Article  Google Scholar 

  • Yildiz AR (2009) A novel particle swarm optimization approach for product design and manufacturing. Int J Adv Manuf Technol 40(5–6):617–628

    Article  Google Scholar 

  • Zeng D, Duddeck F (2017) Improved hybrid cellular automata for crashworthiness optimization of thin-walled structures. Struct Multidiscip Optim 56(1):101–115

    Article  MathSciNet  Google Scholar 

  • Zhao D, Xue D (2010) A comparative study of metamodeling methods considering sample quality merits. Struct Multidiscip Optim 42(6):923–938

    Article  Google Scholar 

  • Zhong ZH (1993) Finite element procedures for contact-impact problems. Oxford University Press, Oxford, pp 96–213

    Google Scholar 

  • Zhou H, Xu P, Xie S (2017) Composite energy-absorbing structures combining thin-walled metal and honeycomb structures. Journal of Rail and Rapid Transit 231(4):394–405

    Article  Google Scholar 

  • Zhu G, Li S, Sun G, Li G, Li Q (2016) On design of graded honeycomb filler and tubal wall thickness for multiple load cases. Thin-Walled Struct 109:377–389

    Article  Google Scholar 

  • Zhu P, Pan F, Chen W, Zhang S (2012) Use of support vector regression in structural optimization: application to vehicle crashworthiness design. Math Comput Simul 86:21–31

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was undertaken at Key Laboratory of Traffic Safety on Track (Central South University), Ministry of Education, China. The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Grant no. 51775558), the supported by Innovation-Driven Project of Central South University (No. 2018CX023) and the support from the Shenghua Yu-ying Talents Program of the Central South University (Principle Investigator: Prof. Suchao Xie). The corresponding author would like to acknowledge the China Scholarship Council/University of Manchester Joint Scholarship for PhD study (201706370205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengxing Yang.

Appendix: The response model expressions

Appendix: The response model expressions

$$ {\displaystyle \begin{array}{l} SEA=\hbox{-} 949.2562{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}+701.7790{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}+598.7812{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 1149.4894{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}+1035.1016{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}+2291.0571{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}\\ {}\kern1.75em \hbox{-} 2297.4196{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}+56.7215{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}+1241.1849{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 2598.5402{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}\hbox{-} 1452.4172{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}+2625.0468{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 3235.2708{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}+2703.6099{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}+1913.4500{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 1667.6270{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}+2171.7826{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}+363.8051{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 2427.5173{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}\hbox{-} 774.1893{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}+2154.2208{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 4115.0621{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}+3274.2119{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}\hbox{-} 1048.0831{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}\\ {}\kern1.5em +639.4714{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}\hbox{-} 0.00015694\end{array}} $$
(20)
$$ {\displaystyle \begin{array}{l} CFE=\hbox{-} 11.3532{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}+14.8120{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}\hbox{-} 0.7069{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 7.2826{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}+5.9566{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}+26.8433{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}\\ {}\kern1.75em \hbox{-} 50.7002{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}+21.9695{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}+4.5661{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 12.5050{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}\hbox{-} 8.7201{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}+11.5366{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}\\ {}\kern1.5em +6.2832{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}\hbox{-} 3.9383{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}+8.9278{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 21.1077{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}+73.9078{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}\hbox{-} 73.7803{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}\\ {}\kern1.5em +17.3019{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}\hbox{-} 0.7784{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}+18.9962{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 60.2296{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}+57.0276{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}\hbox{-} 16.0722{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 0.1643{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}+0.000070585\end{array}} $$
(21)
$$ {\displaystyle \begin{array}{l}{F}_{ip}=6835.8680{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}\hbox{-} 50974.6406{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-2\right)}^2+{\left({t}_3-0.07\right)}^2\right)/8\right]}+43255.6059{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 29657.5978{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}+4255.0217{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}+3399.7037{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}\\ {}\kern1.75em +116438.4361{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}\hbox{-} 70852.9481{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}+38845.0350{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}\\ {}\kern1.5em +13541.1670{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}\hbox{-} 27917.4190{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}\hbox{-} 88906.4254{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}\\ {}\kern1.5em +6229.7421{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}+16230.2918{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}\hbox{-} 39395.7577{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}\\ {}\kern1.5em +12260.7972{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}+48688.5739{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}+8657.6748{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 20686.4121{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}+20295.9443{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}+15418.0245{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 47073.2019{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}+40112.7689{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}\hbox{-} 24575.1546{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}\\ {}\kern1.5em +9918.08293{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}\hbox{-} 0.0027\end{array}} $$
(22)
$$ {\displaystyle \begin{array}{l}{F}_{avg}=\hbox{-} 90049.9564{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}+5072.6960{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}+151010.6483{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 186903.5460{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}+105716.6446{e}^{\left[-\left({\left({t}_1-1.5\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}+267167.6072{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}\\ {}\kern1.75em \hbox{-} 161084.3139{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}\hbox{-} 103470.2327{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}+257555.9588{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 257887.7089{e}^{\left[-\left({\left({t}_1-2\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}\hbox{-} 197905.1519{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}+305740.2096{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 481509.8579{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}+323578.3181{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}+137802.4456{e}^{\left[-\left({\left({t}_1-2.5\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 246955.6966{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}+301241.4774{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}+187071.3895{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 376267.3601{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}\hbox{-} 17173.4284{e}^{\left[-\left({\left({t}_1-3\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}+320346.5287{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-1\right)}^2+{\left({t}_2-0.16\right)}^2\right)/8\right]}\\ {}\kern1.5em \hbox{-} 573877.7356{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-2\right)}^2+{\left({t}_2-0.04\right)}^2\right)/8\right]}+383242.3155{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-3\right)}^2+{\left({t}_2-0.07\right)}^2\right)/8\right]}\hbox{-} 102457.5937{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-4\right)}^2+{\left({t}_2-0.1\right)}^2\right)/8\right]}\\ {}\kern1.5em +57075.2454{e}^{\left[-\left({\left({t}_1-3.5\right)}^2+{\left(l-5\right)}^2+{\left({t}_2-0.13\right)}^2\right)/8\right]}\hbox{-} 0.0198\end{array}} $$
(23)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S., Li, H., Yang, C. et al. Crashworthiness optimisation of a composite energy-absorbing structure for subway vehicles based on hybrid particle swarm optimisation. Struct Multidisc Optim 58, 2291–2308 (2018). https://doi.org/10.1007/s00158-018-2022-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-2022-3

Keywords

Navigation