Skip to main content
Log in

Topology optimization of pressure structures based on regional contour tracking technology

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This article presents a new computational approach to solve the design-dependent loading problem in topology optimization of pressure structures. A simple algorithm based on digital image processing and regional contour tracking technology is proposed that generates the appropriate loading surface during the topology evolution. First, the topological layout produced during the optimization process is transformed into a compact image. Then, the regional contour tracking technology is used to represent the boundary of objects and extract pressure loading elements. At last, the pressures are transferred directly to corresponding element nodes. Due to the semi-automatically determined endpoints of the loading boundaries, the current scheme can deal with structures loaded by pressure from outside the domain, as well as pressure completely contained within the domain. Also, the calculation of the load sensitivities can be avoided in the current scheme. As a simple alternative computational strategy for compliance topology optimization of pressure structures, the current scheme is stable, flexible and efficient. Representative numerical examples are presented to show the validity and advantages of the proposed scheme. Especially, the design of closed containers and storage tanks indicates that it works well for the topology optimization of pressure structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in matlab using 88 lines of code. Struct Multidiscip Optim 43(1):1–16

    Article  MATH  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    MATH  Google Scholar 

  • Bourdin B, Chambolle A (2010) Design-dependent loads in topology optimization. Esaim Control Optimisation & Calculus of Variations 9(9):19–48

    MathSciNet  MATH  Google Scholar 

  • Bruggi M, Cinquini C (2009) An alternative truly-mixed formulation to solve pressure load problems in topology optimization. Comput Methods Appl Mech Eng 198(17–20):1500–1512

    Article  MATH  Google Scholar 

  • Burger W, Burge MJ (2009) Principles of digital image processing: fundamental techniques. Springer Publishing Company, Incorporated, New York

    MATH  Google Scholar 

  • Castleman KR, Hall P (1995) Digital image processing: united, states edn. Pearson Schweiz Ag, Zug

  • Chen BC, Kikuchi N (2001) Topology optimization with design-dependent loads. Finite Elem Anal Des 37(1):57–70

    Article  MATH  Google Scholar 

  • Deaton JD, Grandhi RV (2015) Stress-based design of thermal structures via topology optimization. Struct Multidiscip Optim 53(2):1–18

    MathSciNet  Google Scholar 

  • Du J, Olhoff N (2004a) Topological optimization of continuum structures with design-dependent surface loading – part i: new computational approach for 2d problems. Struct Multidiscip Optim 27(3):151–165

    Article  MathSciNet  MATH  Google Scholar 

  • Du J, Olhoff N (2004b) Topological optimization of continuum structures with design-dependent surface loading. Ii. Algorithm and examples for 3d problems. Struct Multidiscip Optim 27(3):166–177

    Article  MathSciNet  MATH  Google Scholar 

  • Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):1453–1457

    Article  Google Scholar 

  • Fuchs MB, Shemesh NNY (2004) Density-based topological design of structures subjected to water pressure using a parametric loading surface. Struct Multidiscip Optim 28(1):11–19

    Article  Google Scholar 

  • Gao X, Zhao K, Gu YX (2005) Topology optimization with design-dependent loads by level set approach. Engineering Mechanics

  • Hammer VB, Olhoff N (2000) Topology optimization of continuum structures subjected to pressure loading. Struct Multidiscip Optim 19(2):85–92

    Article  Google Scholar 

  • Hammer VB, Olhoff N (2001) Topology optimization of 3D structures with design dependent loads. World Congress of Structural and Multidisciplinary Optimization 26:767–775

    MathSciNet  Google Scholar 

  • Kanno Y, Yamada H (2017) A note on truss topology optimization under self-weight load: mixed-integer second-order cone programming approach. Struct Multidiscip Optim 56:221–226

    Article  MathSciNet  Google Scholar 

  • Lee E, Martins JRRA (2016) Structural topology optimization with design-dependent pressure loads. Struct Multidiscip Optim 53(5):1005–1018

    Article  MathSciNet  Google Scholar 

  • Liang CC, Shiah SW, Jen CY, Chen HW (2004) Optimum design of multiple intersecting spheres deep-submerged pressure hull. Ocean Eng 31(2):177–199

    Article  Google Scholar 

  • Bendsoe, Martin P (2004) Topology optimization: theory, methods, and applications / 2nd ed. Corrected printing. Berlin: Springer

  • Picelli R, Vicente WM, Pavanello R (2014) Bi-directional evolutionary structural optimization for design-dependent fluid pressure loading problems. Eng Optim 47(10):1324–1342

    Article  MathSciNet  Google Scholar 

  • Picelli R, Vicente WM, Pavanello R (2017) Evolutionary topology optimization for structural compliance minimization considering design-dependent fsi loads. Finite Elem Anal Des 135:44–55

    Article  Google Scholar 

  • Querin OM, Steven GP, Xie YM (1998) Evolutionary structural optimisation (eso) using a bidirectional algorithm. Eng Comput 15(8):1031–1048

    Article  MATH  Google Scholar 

  • Rondon A, Guzey S (2016) Fatigue evaluation of the api specification 12f shop welded flat bottom tanks. Int J Press Vessel Pip 149(4):14–23

    Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization*. Mech Struct Mach 25(4):493–524

    Article  Google Scholar 

  • Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscip Optim 21(2):120–127

    Article  MathSciNet  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424

    Article  Google Scholar 

  • Sigmund O, Clausen PM (2007) Topology optimization using a mixed formulation: an alternative way to solve pressure load problems. Comput Methods Appl Mech Eng 196(13):1874–1889

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Sui Y, Peng X (2006) The icm method with objective function transformed by variable discrete condition for continuum structure. Acta Mech Sinica 22(1):68–75

    Article  MathSciNet  MATH  Google Scholar 

  • Tortorelli DA, Michaleris P (1994) Design sensitivity analysis: overview and review. Inverse Prob Sci Eng 1(1):71–105

    Article  Google Scholar 

  • Verbart A, Langelaar M, Keulen FV (2017) A unified aggregation and relaxation approach for stress-constrained topology optimization. Springer-Verlag New York, Inc., New York

    Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wang CF, Zhao M, Ge T (2015) Study on the topology optimization design of underwater pressure structure. Eng Mech 29(4):279–288

    Google Scholar 

  • Wang C, Zhao M, Ge T (2016) Structural topology optimization with design-dependent pressure loads. Struct Multidiscip Optim 53(5):1005–1018

    Article  MathSciNet  Google Scholar 

  • Xavier M, Novotny AA (2017) Topological derivative-based topology optimization of structures subject to design-dependent hydrostatic pressure loading. Struct Multidiscip Optim 56(1):47–57

    Article  MathSciNet  Google Scholar 

  • Xia Q, Wang MY, Shi T (2015) Topology optimization with pressure load through a level set method. Comput Methods Appl Mech Eng 283:177–195

    Article  MathSciNet  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  • Zhang H, Zhang X, Liu S (2008) A new boundary search scheme for topology optimization of continuum structures with design-dependent loads. Struct Multidiscip Optim 37(2):121–129

    Article  Google Scholar 

  • Zhang W, Yang J, Zhu J (2009) Simultaneous topology and shape optimization of pressure loaded structures. Acta Aeronautica Et Astronautica Sinica 30(12):2335–2341

    Google Scholar 

  • Zhang W, Zhao L, Gao T (2017) Cbs-based topology optimization including design-dependent body loads. Comput Methods Appl Mech Eng 322:1–22

  • Zheng B, Chang C-j, Gea HC (2008) Topology optimization with design-dependent pressure loading. Struct Multidiscip Optim 38(6):535–543

    Article  MATH  Google Scholar 

  • Zhu B, Zhang X, Zhang Y, Fatikow S (2017) Design of diaphragm structure for piezoresistive pressure sensor using topology optimization. Struct Multidiscip Optim 55(1):317–329

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the 973 program (2014CB046803), the National Natural Science Foundation of China (Grant nos. 51609169 and 51779173) and the State Key Laboratory Foundation of Shanghai JiaoTong University (Grant No.1502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Zm., Yu, J., Yu, Y. et al. Topology optimization of pressure structures based on regional contour tracking technology. Struct Multidisc Optim 58, 687–700 (2018). https://doi.org/10.1007/s00158-018-1923-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-1923-5

Keywords

Navigation