Skip to main content
Log in

Pareto frontier exploration in multiobjective topology optimization using adaptive weighting and point selection schemes

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Topology optimization has been used in many industries and applied to a variety of design problems. In real-world engineering design problems, topology optimization problems often include a number of conflicting objective functions, such to achieve maximum stiffness and minimum mass of a design target. The existence of conflicting objective functions causes the results of the topology optimization problem to appear as a set of non-dominated solutions, called a Pareto-optimal solution set. Within such a solution set, a design engineer can easily choose the particular solution that best meets the needs of the design problem at hand. Pareto-optimal solution sets can provide useful insights that enable the structural features corresponding to a certain objective function to be isolated and explored. This paper proposes a new Pareto frontier exploration methodology for multiobjective topology optimization problems. In our methodology, a level set-based topology optimization method for a single-objective function is extended for use in multiobjective problems, using a population-based approach in which multiple points in the objective space are updated and moved to the Pareto frontier. The following two schemes are introduced so that Pareto-optimal solution sets can be efficiently obtained. First, weighting coefficients are adaptively determined considering the relative position of each point. Second, points in sparsely populated areas are selected and their neighborhoods are explored. Several numerical examples are provided to illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization Theory, Methods, and Applications. Springer

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Cai Z, Wang Y (2006) A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE Trans Evol Comput 10(6):658–675

    Article  Google Scholar 

  • Cardillo A, Cascini G, Frillici F, Rotini F (2011) Computer-aided embodiment design through the hybridization of mono objective optimizations for efficient innovation process. Comput Ind 62(4):384–397

    Article  Google Scholar 

  • Cardillo A, Cascini G, Frillici FS, Rotini F (2013) Multi-objective topology optimization through GA-based hybridization of partial solutions. Eng Comput 29(3):287–306

    Article  Google Scholar 

  • Chen Y, Zhou S, Li Q (2010) Multiobjective topology optimization for finite periodic structures. Comput Struct 88(11):806–811

    Article  Google Scholar 

  • Das I, Dennis JE (1998) Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631–657

    Article  MathSciNet  MATH  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Diaz A, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Optim 10(1):40–45

    Article  Google Scholar 

  • Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review*. Appl Mech Rev 54(4):331–390

    Article  Google Scholar 

  • Fliege J, Svaiter BF (2000) Steepest descent methods for multicriteria optimization. Math Meth Oper Res 51(3):479–494

    Article  MathSciNet  MATH  Google Scholar 

  • Fliege J, Drummond LG, Svaiter BF (2009) Newton’s method for multiobjective optimization. SIAM J Optim 20(2):602–626

    Article  MathSciNet  MATH  Google Scholar 

  • Fujii D, Kikuchi N (2000) Improvement of numerical instabilities in topology optimization using the SLP method. Struct Multidiscip Optim 19(2):113–121

    Article  Google Scholar 

  • Geoffrion AM (1968) Proper efficiency and the theory of vector maximization. J Math Anal Appl 22(3):618–630

    Article  MathSciNet  MATH  Google Scholar 

  • Haber R, Jog C, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11(1-2):1–12

    Article  Google Scholar 

  • Haimes YY, Lasdon LS, Wismer DA (1971) On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans Syst Man Cybern 1(3):296–297

    Article  MathSciNet  MATH  Google Scholar 

  • Izui K, Yamada T, Nishiwaki S, Tanaka K (2015) Multiobjective optimization using an aggregative gradient-based method. Struct Multidiscip Optim 51(1):173–182

    Article  Google Scholar 

  • Kim IY, De Weck O (2006) Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation. Struct Multidiscip Optim 31(2):105–116

    Article  MathSciNet  MATH  Google Scholar 

  • Kollat JB, Reed PM (2006) Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design. Adv Water Resour 29(6):792–807

    Article  Google Scholar 

  • Kollat JB, Reed P, Kasprzyk J (2008) A new epsilon-dominance hierarchical bayesian optimization algorithm for large multiobjective monitoring network design problems. Adv Water Resour 31(5):828–845

    Article  Google Scholar 

  • Madeira JA, Rodrigues H, Pina H (2006) Multiobjective topology optimization of structures using genetic algorithms with chromosome repairing. Struct Multidiscip Optim 32(1):31–39

    Article  Google Scholar 

  • Marler RT, Arora JS (2010) The weighted sum method for multi-objective optimization: new insights. Struct Multidiscip Optim 41(6):853–862

    Article  MathSciNet  MATH  Google Scholar 

  • Mattson CA, Messac A (2003) Concept selection using s-Pareto frontiers. AIAA J 41(6):1190–1198

    Article  Google Scholar 

  • Messac A, Ismail-Yahaya A, Mattson CA (2003) The normalized normal constraint method for generating the Pareto frontier. Struct Multidiscip Optim 25(2):86–98

    Article  MathSciNet  MATH  Google Scholar 

  • Nishiwaki S, Frecker MI, Min S, Kikuchi N (1998) Topology optimization of compliant mechanisms using the homogenization method. Int J Numer Methods Eng 42:535–559

    Article  MathSciNet  MATH  Google Scholar 

  • Obayashi S, Sasaki D (2002) Self-organizing map of Pareto solutions obtained from multiobjective supersonic wing design. AIAA Paper 991:2002

    Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Oyama A, Nonomura T, Fujii K (2010) Data mining of Pareto-optimal transonic airfoil shapes using proper orthogonal decomposition. J Aircr 47(5):1756–1762

    Article  Google Scholar 

  • Pironneau O (1984) Optimal shape design for elliptic systems. Springer, Berlin

    Book  MATH  Google Scholar 

  • Prager W (1974) A note on discretized michell structures. Comput Methods Appl Mech Eng 3(3):349–355

    Article  MATH  Google Scholar 

  • Sato Y, Izui K, Yamada T, Nishiwaki S (2015) Gradient-based multiobjective optimization using a distance constraint technique and point replacement. Eng Optim 48(7):1226–1250

    Article  MathSciNet  Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68– 75

    Article  Google Scholar 

  • Simpson TW, Spencer DB, Yukish MA, Stump G (2008) Visual steering commands and test problems to support research in trade space exploration. In: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, pp 10–12

  • Sokolowski J, Zolesio JP (1992) Introduction to shape optimization. Springer

  • Stump G, Lego S, Yukish M, Simpson TW, Donndelinger JA (2009) Visual steering commands for trade space exploration: User-guided sampling with example. J. Comput. Inf. Sci. Eng. 9(4):044,501

    Article  Google Scholar 

  • Suresh K (2010) A 199-line matlab code for Pareto-optimal tracing in topology optimization. Struct Multidiscip Optim 42(5):665– 679

    Article  MathSciNet  MATH  Google Scholar 

  • Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318

    Article  MATH  Google Scholar 

  • Svanberg K (1981) Optimization of geometry in truss design. Comput Methods Appl Mech Eng 28(1):63–80

    Article  MATH  Google Scholar 

  • Tai K, Prasad J (2007) Target-matching test problem for multiobjective topology optimization using genetic algorithms. Struct Multidiscip Optim 34(4):333–345

    Article  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wang S, Tai K (2005) Structural topology design optimization using genetic algorithms with a bit-array representation. Comput Methods Appl Mech Eng 194(36):3749–3770

    Article  MATH  Google Scholar 

  • Wang S, Tai K, Wang MY (2006) An enhanced genetic algorithm for structural topology optimization. Int J Numer Methods Eng 65(1):18–44

    Article  MathSciNet  MATH  Google Scholar 

  • Wildman RA, Gazonas GA (2015) Multiobjective topology optimization of energy absorbing materials. Struct Multidiscip Optim 51(1):125–143

    Article  MathSciNet  Google Scholar 

  • Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199:2876–2891

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh L (1963) OptiMality and non-scalar-valued performance criteria. IEEE Trans Autom Control 8(1):59–60

    Article  Google Scholar 

  • Zavala GR, Nebro AJ, Luna F, Coello CAC (2014) A survey of multi-objective metaheuristics applied to structural optimization. Struct Multidiscip Optim 49(4):537–558

    Article  MathSciNet  Google Scholar 

  • Zhao SZ, Suganthan P (2011) Two-lbests based multi-objective particle swarm optimizer. Eng Optim 43 (1):1–17

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Sato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, Y., Izui, K., Yamada, T. et al. Pareto frontier exploration in multiobjective topology optimization using adaptive weighting and point selection schemes. Struct Multidisc Optim 55, 409–422 (2017). https://doi.org/10.1007/s00158-016-1499-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1499-x

Keywords

Navigation