Skip to main content
Log in

Bridging art and engineering using Escher-based virtual elements

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The geometric shape of an element plays a key role in computational methods. Triangular and quadrilateral shaped elements are utilized by standard finite element methods. The pioneering work of Wachspress laid the foundation for polygonal interpolants which introduced polygonal elements. Tessellations may be considered as the next stage of element shape evolution. In this work, we investigate the topology optimization of tessellations as a means to coalesce art and engineering. We mainly focus on M.C. Escher’s tessellations using recognizable figures. To solve the state equation, we utilize a Mimetic Finite Difference inspired approach, known as the Virtual Element Method. In this approach, the stiffness matrix is constructed in such a way that the displacement patch test is passed exactly in order to ensure optimum numerical convergence rates. Prior to exploring the artistic aspects of topology optimization designs, numerical verification studies such as the displacement patch test and shear loaded cantilever beam bending problem are conducted to demonstrate the accuracy of the present approach in two-dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. M.C. Escher defines motif as a certain polygonal form that repeats itself in congruent shapes to form a tessellation (Schattschneider 2004).

  2. Other mathematical programming algorithms such as, Method of Moving Asymptotes (MMA) (Svanberg 1987), Sequential Quadratic Programming (SQP) may also be used.

References

  • Escher MC The official website. http://www.mcescher.com/

  • Almeida SRM, Paulino GH, Silva ECN (2010) Layout and material gradation in topology optimization of functionally graded structures: A global-local approach. Struct Multidiscip Optim 42(6):855–868

    Article  MATH  MathSciNet  Google Scholar 

  • Arroyo M, Ortiz M (2006) Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Methods Eng 65(13):2167– 2202

    Article  MATH  MathSciNet  Google Scholar 

  • Barber JR (2010) Elasticity, 3rd edn. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Beghini LL, Beghini A, Katz N, Baker WF, Paulino GH (2014) Connecting architecture and engineering through structural topology optimization. Eng Struct 59:716–726

    Article  Google Scholar 

  • Beirão Da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013a) Basic principles of virtual element methods. Math Model Methods in Appl Sci 23(1):199–214

    Article  MATH  Google Scholar 

  • Beirão Da Veiga L, Brezzi F, Marini LD (2013b) Virtual elements for linear elasticity problems. SIAM J Numer Anal 51(2):794–812

    Article  MATH  MathSciNet  Google Scholar 

  • Beirão Da Veiga L, Brezzi F, Marini LD, Russo A (2013c) The hitchhiker guide to the virtual element Method. Math Model Methods in Appl Sci:1–32

  • Beirão Da Veiga L, Manzini G (2013) A virtual element method with arbitrary regularity. IMA J Numer Anal:1–23. doi:10.1093/imanum/drt018

  • Belikov VV, Ivanov VD, Kontorovich VK, Korytnik SA, Semenov AY (1997) The Non-sibsonian interpolation: A new method of interpolation of the values of a function on an arbitrary set of points. Comput Math Math Phys 37(1):9–15

    MathSciNet  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization - Theory, methods and applications. Springer, New York

    Google Scholar 

  • Bishop JE (2009) Simulating the pervasive fracture of materials and structures using randomly close packed Voronoi tessellations. Comput Mech 44(4):455–471

    Article  MATH  Google Scholar 

  • Bolander JE, Saito S (1998) Fracture analysis using spring networks with random geometry. Eng Fract Mech 61:569–591

    Article  Google Scholar 

  • Bolander JE, Sukumar N (2005) Irregular lattice model for quasistatic crack propagation. Phys Rev B- Condens Matter Mater Phys 71(9). art. no. 094106

  • Bool FH, Kist JR, Wierda F, Locher JL (1992) M.C. Escher: His life and complete graphic work. Harry N. Abrams, Inc, New York

    Google Scholar 

  • Brezzi F, Marini LD (2013) Virtual Element Methods for plate bending problems. Comput Methods Appl Mech Eng 253:455–462

    Article  MATH  MathSciNet  Google Scholar 

  • Christ NH, Friedberg R, Lee TD (1982) Weights of links and plaquettes in a random lattice. Nucl Phys B 210(3):337–346

    Article  MathSciNet  Google Scholar 

  • Christensen PW, Klarbring A (2008) An introduction to structural optimization. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis. John Wiley and Sons, Inc, New Jersey

    Google Scholar 

  • Emmer M, Schattschneider D (eds) (2005) M.C. Escher’s legacy: A centennial celebration. In: Emmer M, Schattschneider D (eds). Springer, Berlin Heidelberg New York

  • Fathauer R (2010) Designing and drawing tessellations. Tessellations

  • Fathauer R (2011) Fractal trees. Tarquin Publications

  • Floater MS (2003) Mean value coordinates. Comput Aided Geom Des 20(1):19–27

    Article  MATH  MathSciNet  Google Scholar 

  • Floater MS, Hormann K, Kòs G (2004) A general construction of barycentric coordinates over convex polygons. Adv Comput Math 24(1-4):311–331

    Article  Google Scholar 

  • Floater MS, Kòs G, Reimers M (2005) Mean value coordinates in 3D. Comput Aided Geom Des 22(7):623–631

    Article  MATH  Google Scholar 

  • Gain AL, Paulino GH (2012) Phase-field based topology optimization with polygonal elements: A finite volume approach for the evolution equation. Struct Multidiscip Optim 46(3):327– 342

    Article  MATH  MathSciNet  Google Scholar 

  • Gain AL, Paulino GH, Leonardo D, Menezes IFM (2013) Topology optimization using polytopes. Submitted. arXiv:1312.7016

  • Gain AL, Talischi C, Paulino GH (2014) On the virtual element method for three-dimensional elasticity problems on arbitrary polyhedral meshes. Comput Methods Appl Mech Eng. In press. doi:10.1016/j.cma.2014.05.005

  • Ghosh S (2011) Micromechanical analysis and multi-scale modelling using the voronoi cell finite element method. CRC Press, Boca Raton

    Book  Google Scholar 

  • Groenwold AA, Etman LFP (2008) On the equivalence of optimality criterion and sequential approximate optimization methods in the classical topology layout problem. Int J Numer Methods Eng 73(3):297–316

    Article  MATH  MathSciNet  Google Scholar 

  • Hassani B, Hinton E (1999) Homogenization and structural topology optimization: Theory, practice and software. Springer, Berlin Heidelberg New York

    Book  MATH  Google Scholar 

  • Hiyoshi H, Sugihara K (1999) Two generalizations of an interpolant based on Voronoi diagrams. Int J Shape Model 5(2):219–231

    Article  Google Scholar 

  • Hormann K, Sukumar N (2008) Maximum entropy coordinates for arbitrary polytopes In: Eurographics symposium on geometry processing, vol 27, pp 1513–1520

  • Hormann K, Tarini M (2004) A quadrilateral rendering primitive In: Proceedings of the siggraph/eurographics workshop on graphics hardware, pp 7–14

  • Mijar AR, Swan CC, Arora JS, Kosaka I (1998) Continuum topology optimization for concept design of frame bracing systems. J Struct Eng 124(5):541–550

    Article  Google Scholar 

  • Natarajan S, Bordas S, Mahapatra DR (2009) Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping. Int J Numer Methods Eng 80(1):103–134

    Article  MATH  MathSciNet  Google Scholar 

  • Ohsaki M (2010) Optimization of finite dimensional structures. CRC Press, Boca Raton

    Book  Google Scholar 

  • Papoulia KD, Vavasis SA, Ganguly P (2006) Spatial convergence of crack nucleation using a cohesive finite-element model on a pinwheel-based mesh. Int J Numer Methods Eng 67(1):1–16

    Article  MATH  MathSciNet  Google Scholar 

  • Paulino GH, Park K, Celes W, Espinha R (2010) Adaptive dynamic cohesive fracture simulation using nodal perturbation and edge-swap operators. Int J Numer Methods Eng 84(11):1303–1343

    Article  MATH  Google Scholar 

  • Penrose R (1979a) Pentaplexity a class of non-periodic tilings of the plane. The Math Intell 2(1):32–37

    Article  MATH  MathSciNet  Google Scholar 

  • Penrose R (1979b) Set of tiles for covering a surface. U.S. Patent 4133152

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Multidiscip Optim 4(3-4):250–252

    Article  Google Scholar 

  • Schattschneider D (2004) M.C. Escher: Visions of symmetry, 2nd edn. Harry N. Abrams

  • Sibson R (1980) A vector identity for the Dirichlet tessellation. Math Proc Camb Philos Soc 87:151–155

    Article  MATH  MathSciNet  Google Scholar 

  • Sukumar N (2004) Construction of polygonal interpolants: A maximum entropy approach. Int J Numer Methods Eng 61(12):2159–2181

    Article  MATH  MathSciNet  Google Scholar 

  • Sukumar N, Malsch EA (2006) Recent advances in the construction of polygonal finite element interpolations. Arch Comput Methods Eng 13(1):129–163

    Article  MATH  MathSciNet  Google Scholar 

  • Sukumar N, Moran B, Semenov AY, Belikov VV (2001) Natural neighbor Galerkin methods. Int J Numer Methods Eng 50:1–27

    Article  MATH  MathSciNet  Google Scholar 

  • Sukumar N, Tabarraei A (2004) Conforming polygonal finite elements. Int J Numer Methods Eng 61(12):2045–2066

    Article  MATH  MathSciNet  Google Scholar 

  • Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93(3):291–318

    Article  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotoes - a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Talischi C, Paulino GH, Pereira A, Menezes IFM (2010) Polygonal finite elements for topology optimization: A unifying paradigm. Int J Numer Methods Eng 82:671–698

    MATH  Google Scholar 

  • Talischi C, Paulino GH, Pereira A, Menezes IFM (2012) PolyTop: A matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. J Struct Multidiscip Optim 45(3):329–357

    Article  MATH  MathSciNet  Google Scholar 

  • Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw Hill, New York

    MATH  Google Scholar 

  • Wachspress EL (1975) A rational finite element basis. Academic Press, New York

    MATH  Google Scholar 

  • Warren J (1996) Barycentric coordinates for convex polytopes. Adv Comput Math 6(1):97–108

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glaucio H. Paulino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulino, G.H., Gain, A.L. Bridging art and engineering using Escher-based virtual elements. Struct Multidisc Optim 51, 867–883 (2015). https://doi.org/10.1007/s00158-014-1179-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1179-7

Keywords

Navigation