Skip to main content
Log in

A flow topology optimization method for steady state flow using transient information of flow field solved by lattice Boltzmann method

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

An Erratum to this article was published on 20 May 2016

Abstract

A topology optimization method for fluid flow using transient information is proposed. In many conventional methods, the design domain is updated using steady state information which is obtained after solving the flow field equations completely. Hence we must solve the flow field at each iterative which leads to high computational cost. In contrast, the proposed method updates the design domain using transient information of flow field. Hence the flow field is solved only once. The flow field is solved by lattice Boltzmann method (LBM). It is found that, by using LBM, the flow field is stably computed even though the design domain drastically changes during the computation. The design domain is updated according to sensitivity analysis. In many conventional methods, the sensitivity of objective functionals under lattice Boltzmann equations is obtained using additional adjoint equations. However, in the proposed method, the sensitivity is explicitly formulated and computed without using adjoint variables. In this paper, we show some numerical examples for low Reynolds number flows. The results demonstrate good convergence property in small computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2008) Topology optimization of large scale Stokes flow problems. Struct Multidiscip Optim 35:175–180

    Article  MathSciNet  MATH  Google Scholar 

  • Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Bajaj N, Subbarayan G, Garimella SV (2012) Topological design of channels for squeeze flow optimization of thermal interface materials. Int J Heat Mass Transfer 55:3560–3375

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bhatnager P, Gross E, Krook M (1954) A model for collision processes in gases, I: Small amplitude processes in charged and neutral one-component system. Phys Rev 94:511–525

    Article  MATH  Google Scholar 

  • Borrval T, Peterson J (2003) Topology optimization of fluids in Stokes flow. Int J Numer Methods Fluids 41:77–107

    Article  MathSciNet  Google Scholar 

  • Brandenburg C, Lindemann F, Ulbrich M, Ulbrich S (2009) A continuous adjoint approach to shape optimization for Navier–Stokes flow. In: Künisch K, Sprekels J, Leugering G, Tröltzsch F (eds) Optimal control of coupled systems of partial differential equations, vol 158 of international series of numerical mathematics. Birkhäuser Basel, pp 35–56

  • Deng Y, Liu Z, Zhang P, Liu Y, Wu Y (2011) Topology optimization of unsteady incompressible Navier–Stokes flows. J Comput Phys 230:6688–6708

    Article  MathSciNet  MATH  Google Scholar 

  • Frisch U, D’Humières D, Hasslacher D, Lallemand P, Pomeau Y, Rivet J (1987) Lattice gas hydrodynamics in two and three dimensions. Complex Syst 1:649–707

    MathSciNet  MATH  Google Scholar 

  • Gersborg-Hansen A, Sigmund O, Haber R (2005) Topology optimization of channel flow problem. Struct Multidiscip Optim 30:181–192

    Article  MathSciNet  MATH  Google Scholar 

  • Guest JK, Précost JH (2006) Topology optimization of creeping fluid flows using a Darcy–Stokes finite element. Int J Numer Methods Eng 66:461–484

    Article  MathSciNet  MATH  Google Scholar 

  • Guo Z, Zhao T S (2002) Lattice Boltzmann model for incompressible flows through porous media. Phys Rev E 66:036304

    Article  Google Scholar 

  • Haftka RT (1985) Simultaneous analysis and design. AIAA J 23:1099–1103

    Article  MathSciNet  MATH  Google Scholar 

  • Kirk A, Kreissl S, Pingen G, Maute K (2011) Lattice Boltzmann topology optimization for transient flow, In: MAESC 2011 conference, Christian Brothers University, Memphis, Tennessee

  • Krause M, Thater G, Heuveline V (2013) Adjoint-based fluid flow control and optimisation with lattice Boltzmann methods. Comput Math Appl 65:945–960

    Article  MathSciNet  MATH  Google Scholar 

  • Kreissl S, Pingen G, Evgrafov A, Maute K (2010) Topology optimization of flexible micro-fluidic devices. Struct Multidiscip Optim 42:495–516

    Article  Google Scholar 

  • Kreissl S, Pingen G, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87:1229–1253

    MathSciNet  MATH  Google Scholar 

  • Mattila K, Hyväluoma J, Timonen J, Rossi T (2008) Comparison of implementations of the lattice-Boltzmann method. Comput Math Appl 55:1514–1524

    Article  MathSciNet  MATH  Google Scholar 

  • Maute K, Allen M (2004) Conceptual design of aeroelastic structures by topology optimization. Struct Multidiscip Optim 27:27–42

    Article  Google Scholar 

  • Moos O, Klimetzek F, Rossmann R (2004) Bionic optimization of air-guiding system. In: Proceedings of SAE 2004 World Congress and Exhibition, 2004-01-1377

  • Pingen G, Evgrafov A, Maute K (2007) Topology optimization of flow domains using the lattice Boltzmann method. Struct Multidiscip Optim 34:507–524

    Article  MathSciNet  MATH  Google Scholar 

  • Pingen G, Maute K (2010) Optimal design for non-Newtonian flows using a topology optimization approach. Comput Math Appl 59:2340–2350

    Article  MathSciNet  MATH  Google Scholar 

  • Pingen G, Waidmann M, Evgrafov A, Maute K (2009) Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization. Comput Fluids 38:910–923

    Article  MathSciNet  MATH  Google Scholar 

  • Pingen G, Waidmann M, Evgrafov A, Maute K (2010) A parametric level-set approach for topology optimization of flow domains. Structural and Multidisciplinary Optimization 41:117–131

    Article  MathSciNet  MATH  Google Scholar 

  • Pironneau O (1973) On optimum profiles in Stokes flow. J Fluid Mech 59:117–128

    Article  MathSciNet  MATH  Google Scholar 

  • Qian Y, D’Humières D, Lallemand P (1992) Lattice BGK models for Navier–Stokes equation. Europhisics Lett 17:479–484

    Article  MATH  Google Scholar 

  • Steven G, Li Q, Xie Y (2000) Evolutionary topology and shape design for general physical field problems. Comput Mech 26:129–139

    Article  MATH  Google Scholar 

  • Succi S (2001) The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford University Press

  • Wang L, Fan Y, Luo L (2010) Heuristic optimality criterion algorithm for shape design of fluid flow. J Comput Phys 229:8031–8044

    Article  MATH  Google Scholar 

  • Zhou S, Li Q (2008) A variational level set method for the topology optimization of steady-state Navier–Stokes flow. J Comput Phys 227:10178–10195

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Yonekura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yonekura, K., Kanno, Y. A flow topology optimization method for steady state flow using transient information of flow field solved by lattice Boltzmann method. Struct Multidisc Optim 51, 159–172 (2015). https://doi.org/10.1007/s00158-014-1123-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-014-1123-x

Keywords

Navigation