Skip to main content
Log in

On the similarities between micro/nano lithography and topology optimization projection methods

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The aim of this paper is to incorporate a model for micro/nano lithography production processes in topology optimization. The production process turns out to provide a physical analogy for projection filters in topology optimization. Blueprints supplied by the designers cannot be directly used as inputs to lithographic processes due to the proximity effect which causes rounding of sharp corners and geometric interaction of closely spaced design elements. Therefore, topology optimization is applied as a tool for proximity effect correction. Furthermore, it is demonstrated that the robust projection filter can be used to account for uncertainties due to lithographic production processes which results in manufacturable blueprint designs and eliminates the need for subsequent corrections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. These values are strongly dependent on the technology at hand. Values \(\alpha _{\mathrm {f}} = 0.013~\mathrm {\mu m}\), \(\alpha _{\mathrm {b}} = 34~\mathrm {\mu m}\) and \(\tau = 0.512\) were reported for a ZEP520 resist material and a more modern EBL system. It can be expected that the backscattering component will approximately lead to a uniform increase of the background exposure for such large differences between \(\alpha _{\mathrm {f}}\) and \(\alpha _{\mathrm {b}}\).

  2. It should be pointed out that the term regularization is often used in lithography to describe techniques for cleaning the dose pattern which differs from topology optimization where regularization is used for ensuring existence of the solution.

References

  • Anderson E, Olynick D, Chao W, Harteneck B, Veklerov E (2001) Influence of sub-100 nm scattering on high-energy electron beam lithography. J Vac Sci Technol B 19(6):2504–2507

    Article  Google Scholar 

  • Andreassen E, Lazarov BS, Sigmund O (2012) Design of manufacturable 3d extremal elastic microstructure. In review

  • Bendsøe M (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe M, Sigmund O (2004) Topology optimization: theory methods and applications, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Born M, Wolf E, Bhatia A, Clemmow P, Gabor D, Stokes A, Taylor A, Wayman P, Wilcock W (2000) Principles of optics: electromagnetic theory of propagation. Interference and diffraction of light. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Brunner T, Ferguson R (1996) Approximate models for resist processing effects In: Proceedings SPIE 2726, optical microlithography IX, pp 198–207

  • Bruns T, Tortorelli D (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Chang T (1975) Proximity effect in electron-beam lithography. J Vac Sci Technol 12(6):1271–1275

    Article  Google Scholar 

  • Chen S, Chen W (2011) A new level-set based approach to shape and topology optimization under geometric uncertainty. Struct Multidiscip Optim 44:1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Choy S, Jia N, Tong C, Tang M, Lam E (2012) A robust computational algorithm for inverse photomask synthesis in optical projection lithography. SIAM J Imaging Sci 5(2):625–651

    Article  MathSciNet  MATH  Google Scholar 

  • Cobb N (1998) Fast optical and process proximity correction algorithms for integrated circuit manufacturing. PhD thesis, University of California at Berkeley

  • Dill F, Neureuther A, Tuttle J, Walker E (1975) Modeling projection printing of positive photoresists. Electron Devices, IEEE Transactions on 22(7):456–464

    Article  Google Scholar 

  • Dobisz E, Marrian C (1997) Control in sub-100 nm lithography in SAL-601. J Vac Sci Technol B 15(6):2327–2331

    Article  Google Scholar 

  • Dobisz E, Bandić Z, Peckerar M (2007) Electron beam nanolithography. In: Suzuki K, Smith B (eds), Microlithography, CRC Press, chap 15, pp 799–836

  • Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MathSciNet  MATH  Google Scholar 

  • Harafuji K, Misaka A, Nomura N, Kawamoto M, Yamashita H (1993) A novel hierarchical approach for proximity effect correction in electron beam lithography. Comput-Aided Des Integr Circ Syst, IEEE Trans on 12(10):1508–1514

    Article  Google Scholar 

  • Haslam ME, McDonald JF (1986) Transform based proximity corrections: Experimental results and comparisons. J Vac Sci Technol B 4(1):168–175

    Article  Google Scholar 

  • Hopkins H (1953) On the diffraction theory of optical images. Proceedings of the Royal Society of London Series A Math Phys Sci 217(1130):408–432

    Article  MathSciNet  MATH  Google Scholar 

  • Jang GW, van Dijk N, van Keulen F (2012) Topology optimization of mems considering etching uncertainties using the level-set method. Int J Numer Methods Eng 92(6):571–588

    Article  MathSciNet  Google Scholar 

  • Jansen M, Lombaert G, Diehl M, Lazarov B, Sigmund O, Schevenels M (2013) Robust topology optimization accounting for misplacement of material. Struct Multidiscip Optim 47:317–333

    Article  MathSciNet  MATH  Google Scholar 

  • Jia N, Lam E (2011) Pixelated source mask optimization for process robustness in optical lithography. Opt Express 19(20):19,384–19,398

    Article  Google Scholar 

  • Jia N, Wong A, Lam E (2008) Robust mask design with defocus variation using inverse synthesis. In: Proceedings SPIE 7140, Lithography Asia 2008. pp 71, 401W–71, 401W–10

  • Lazarov BS, Schevenels M, Sigmund O (2011) Robust design of large-displacement compliant mechanisms. Mech Sci 2(2):175–182

    Article  Google Scholar 

  • Lazarov BS, Schevenels M, Sigmund O (2012) Topology optimization considering material and geometric uncertainties using stochastic collocation methods. Struct Multidiscip Optim 46:597–612

    Article  MathSciNet  MATH  Google Scholar 

  • Lee SY, Jacob J, Chen CM, McMillan J, MacDonald N (1991) Proximity effect correction in electron-beam lithography: a hierarchical rule-based scheme – PYRAMID. J Vac Sci Technol B 9(6):3048–3053

    Article  Google Scholar 

  • Levinson H, Arnold W (1997) Optical lithography. In: Rai-Choudhury P (ed) Handbook of microlithography, micromachining, and microfabrication, IEE materials & devices series, vol 1, SPIE optical engineering press, chap 1

  • Madjarova N (1992) Characteristics of the resist development process in electron beam lithography. Microelectron J 23(5):375–381

    Article  Google Scholar 

  • McCord M, Rooks M (1997) Electron beam lithography. In: Rai-Choudhury P (ed) Handbook of Microlithography, Micromachining, and Microfabrication, IEE materials & devices series, vol 1, SPIE Optical Engineering Press, chap 2

  • Owen G, Rissman P (1983) Proximity effect correction for electron beam lithography by equalization of background dose. J Appl Phys 54(6):3573–3581

    Article  Google Scholar 

  • Pati Y, Kailath T (1994) Phase-shifting masks for microlithography: automated design and mask requirements. J Opt Soc Am A 11(9):2438–2452

    Article  Google Scholar 

  • Peckerar M, Chang S, Marrian C (1995) Proximity correction algorithms and a co-processor based on regularized optimization. I: Description of the algorithm. J Vac Sci Technol B 13(6):2518–2525

    Article  Google Scholar 

  • Peckerar M, Sander D, Srivastava A, Foli A, Vishkin U (2007) Electron beam and optical proximity effect reduction for nanolithography: new results. J Vac Sci Technol B 25(6):2288–2294

    Article  Google Scholar 

  • Petersson J (1999) Some convergence results in perimeter-controlled topology optimization. Comput Methods Appl Mech Eng 171(1–2):123–140

    Article  MathSciNet  MATH  Google Scholar 

  • Poonawala A, Milanfar P (2007) Mask design for optical microlithography – An inverse imaging problem. Image Processing. IEEE Transactions on 16(3):774–788

    MathSciNet  Google Scholar 

  • Randall J, Ronse K, Marschner T, Goethals AM, Ercken M (1999) Variable-threshold resist models for lithography simulation. In: Proceedings SPIE 3679, optical microlithography, vol XII, pp 176–182

  • Schevenels M, Lazarov B, Sigmund O (2011) Robust topology optimization accounting for spatially varying manufacturing errors. Comput Methods Appl Mech Eng 200(49–52):3613–3627

    Article  MATH  Google Scholar 

  • Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524

    Article  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424

    Article  Google Scholar 

  • Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mechanica Sinica 25:227–239

    Article  MATH  Google Scholar 

  • Suzuki K (2007) Electron beam lithography systems. In: Suzuki K, Smith B (eds) Microlithography. CRC Press, chap 6, Boca Raton, pp 329–360

    Chapter  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes – a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Wang F, Jensen J, Sigmund O (2011a) Robust topology optimization of photonic crystal waveguides with tailored dispersion properties. J Opt Soc Am B: Opt Phys 28(3):387–397

    Article  Google Scholar 

  • Wang F, Lazarov B, Sigmund O (2011b) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43:767–784

    Article  MATH  Google Scholar 

  • Wüest R, Hunziker C, Robin F, Strasser P, Erni D, Jäckel H (2004) Limitations of proximity-effect correction for electron-beam patterning of photonic crystals. In: Proceedings SPIE 5277, photonics: design, technology, and packaging, pp 186–197

  • Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidiscip Optim 41:495–505

    Article  MathSciNet  MATH  Google Scholar 

  • Yu JC, Yu P (2010) Impacts of cost functions on inverse lithography patterning. Opt Express 18(22):23,331–23,342

    Article  Google Scholar 

  • Zhou M, Rozvany G (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimizations. Comput Methods Appl Mech Eng 89(1–3):309–336

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Lars Hagedorn Frandsen of the DTU Fotonik department for fruitful discussions on the topic. This research was supported by the NextTop project sponsored by the Villum Foundation and the KU Leuven - BOF PFV/10/002 OPTEC - Optimization in Engineering Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miche Jansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, M., Lazarov, B.S., Schevenels, M. et al. On the similarities between micro/nano lithography and topology optimization projection methods. Struct Multidisc Optim 48, 717–730 (2013). https://doi.org/10.1007/s00158-013-0941-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-013-0941-6

Keywords

Navigation