Structural and Multidisciplinary Optimization

, Volume 47, Issue 4, pp 583–597 | Cite as

Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material

Research Paper

Abstract

The present paper studies multi-objective design of lightweight thermoelastic structure composed of homogeneous porous material. The concurrent optimization model is applied to design the topologies of light weight structures and of the material microstructure. The multi-objective optimization formulation attempts to find minimum structural compliance under only mechanical loads and minimum thermal expansion of the surfaces we are interested in under only thermo loads. The proposed optimization model is applied to a sandwich elliptically curved shell structure, an axisymmetric structure and a 3D structure. The advantage of the concurrent optimization model to single scale topology optimization model in improving the multi-objective performances of the thermoelastic structures is investigated. The influences of available material volume fraction and weighting coefficients are also discussed. Numerical examples demonstrate that the porous material is conducive to enhance the multi-objective performance of the thermoelastic structures in some cases, especially when lightweight structure is emphasized. An “optimal” material volume fraction is observed in some numerical examples.

Keywords

Concurrent optimization Multi-objective optimization Porous material Homogenization Thermoelastic structure 

References

  1. Allaire G, Jouve F, Toader AM (2002) A level-set method for shape optimization. C R Math 334(12):1125–1130MathSciNetMATHGoogle Scholar
  2. Ambrosio L, Buttazzo G (1993) An optimal-design problem with perimeter penalization. Calc Var Partial Differ Equ 1(1):55–69MathSciNetMATHCrossRefGoogle Scholar
  3. Amir O, Sigmund O (2007) On reducing computational effort in topology optimization: how far can we go? Struct Multidisc Optim 44(1):25–29CrossRefGoogle Scholar
  4. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidisc Optim 1(4):193–202CrossRefGoogle Scholar
  5. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRefGoogle Scholar
  6. Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654Google Scholar
  7. Bendsøe MP, Sigmund O (2003) Topology optimization: theory methods and applications. Springer, BerlinGoogle Scholar
  8. Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis for periodic structures. North-Holland, AmsterdamMATHGoogle Scholar
  9. Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158MathSciNetMATHCrossRefGoogle Scholar
  10. Cheng G, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17(3):305–323MathSciNetMATHCrossRefGoogle Scholar
  11. Coelho PG, Fernandes PR, Guedes JM, Rodrigues HC (2008) A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct Multidisc Optim 35(2):107–115CrossRefGoogle Scholar
  12. Colombo P (2006) Conventional and novel processing methods for cellular ceramics. Philos Trans R Soc A 364(1838):109–124CrossRefGoogle Scholar
  13. Gao T, Zhang WH (2010) Topology optimization involving thermo-elastic stress loads. Struct Multidisc Optim 42(5):725–738CrossRefGoogle Scholar
  14. Guedes JM, Lubrano E, Rodrigues HC, Turteltaub S (2006) Hierarchical optimization of material and structure for thermal transient problems. In: Iutam symposium on topological design optimization of structures, machines and materials: status and perspectives, vol 137, pp 527–536Google Scholar
  15. Guest JK (2009) Imposing maximum length scale in topology optimization. Struct Multidisc Optim 37(5):463–473MathSciNetCrossRefGoogle Scholar
  16. Guest JK, Prevost JH (2006) Optimizing multifunctional materials: design of microstructures for maximized stiffness and fluid permeability. Int J Solids Struct 43:7028–7047MATHCrossRefGoogle Scholar
  17. Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MathSciNetMATHCrossRefGoogle Scholar
  18. Hashin Z (1983) Analysis of composite materials—a survey. J Appl Mech 50:481–505MATHCrossRefGoogle Scholar
  19. Kruijf Nd, Zhou SW, Li Q, Mai YW (2007) Topological design of structures and composite materials with multiobjectives. Int J Solids Struct 44(22–23):7092–7109MATHCrossRefGoogle Scholar
  20. Liu S, Cheng G (1995) Homogenization-based method for predicting thermal expansion coefficients of composite materials. J Dalian Univ Technol 35(5):451–457MATHGoogle Scholar
  21. Liu ST, Cheng GD, Gu Y, Zheng XG (2002) Mapping method for sensitivity analysis of composite material property. Struct Multidisc Optim 24(3):212–217CrossRefGoogle Scholar
  22. Liu T, Deng ZC, Lu TJ (2006) Design optimization of truss-cored sandwiches with homogenization. Int J Solids Struct 43(25–26):7891–7918MATHCrossRefGoogle Scholar
  23. Liu L, Yan J, Cheng GD (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86(13–14):1417–1425CrossRefGoogle Scholar
  24. Niu B, Yan J, Cheng GD (2009) Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidisc Optim 39(2):115–132CrossRefGoogle Scholar
  25. Patzak B, Bittnar Z (2001) Design of object oriented finite element code. Adv Eng Softw 32(10–11):759–767MATHCrossRefGoogle Scholar
  26. Pedersen P, Pedersen NL (2010) Strength optimized designs of thermoelastic structures. Struct Multidisc Optim 42(5):681–691CrossRefGoogle Scholar
  27. Petersson J, Sigmund O (1998) Slope constrained topology optimization. Int J Numer Methods Eng 41(8):1417–1434MathSciNetMATHCrossRefGoogle Scholar
  28. Rodrigues H, Fernandes P (1995) A material based model for topology optimization of thermoelastic structures. Int J Numer Methods Eng 38(12):1951–1965MathSciNetMATHCrossRefGoogle Scholar
  29. Rodrigues H, Guedes JM, Bendsoe MP (2002) Hierarchical optimization of material and structure. Struct Multidisc Optim 24(1):1–10CrossRefGoogle Scholar
  30. Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4(3–4):250–252CrossRefGoogle Scholar
  31. Sigmund O (1994a) Design of material structures using topology optimization. Technical University of Denmark, DenmarkGoogle Scholar
  32. Sigmund O (1994b) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31:2313–2329MathSciNetMATHCrossRefGoogle Scholar
  33. Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5):401–424CrossRefGoogle Scholar
  34. Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRefGoogle Scholar
  35. Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067MathSciNetCrossRefGoogle Scholar
  36. Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ (2006) Processing routes to macroporous ceramics: a review. J Am Ceram Soc 89(6):1771–1789CrossRefGoogle Scholar
  37. Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. Siam J Optim 12(2):555–573MathSciNetMATHCrossRefGoogle Scholar
  38. Taylor CM, Smith CW, Miller W, Evans KE (2011) The effects of hierarchy on the in-plane elastic properties of honeycombs. Int J Solids Struct 48:1330–1339MATHCrossRefGoogle Scholar
  39. Terada K, Kikuchi N (2001) A class of general algorithms for multi-scale analyses of heterogeneous media. Comput Methods Appl Mech Eng 190(40–41):5427–5464MathSciNetMATHCrossRefGoogle Scholar
  40. Wang MY, Wang SY (2005) Bilateral filtering for structural topology optimization. Int J Numer Methods Eng 63(13):1911–1938MATHCrossRefGoogle Scholar
  41. Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl M 192(1–2):227–246MATHCrossRefGoogle Scholar
  42. Wang B, Yan J, Cheng GD (2011) Optimal structure design with low thermal directional expansion and high stiffness. Eng Optim 43(6):581–595CrossRefGoogle Scholar
  43. Wen ZH, Han YS, Liang L, Li JB (2008) Preparation of porous ceramics with controllable pore sizes in an easy and low-cost way. Mater Charact 59(9):1335–1338CrossRefGoogle Scholar
  44. Xia Q, Wang MY (2008) Topology optimization of thermoelastic structures using level set method. Comput Mech 42(6):837–857MathSciNetMATHCrossRefGoogle Scholar
  45. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRefGoogle Scholar
  46. Xie YM, Zuo ZH, Huang XD, Rong JH (2012) Convergence of topological patterns of optimal periodic structures under multiple scales. Struct Multidisc Optim 46(1):41–50CrossRefGoogle Scholar
  47. Xu SL, Cai YW, Cheng GD (2010) Volume preserving nonlinear density filter based on heaviside functions. Struct Multidisc Optim 41(4):495–505MathSciNetCrossRefGoogle Scholar
  48. Yan J, Cheng GD, Liu L (2008) A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials. Int J Simul Multidisc Des Optim 2:259–266CrossRefGoogle Scholar
  49. Yang J, Yu J, Huang Y (2011) Recent developments in gelcasting of ceramics. J Eur Ceram Soc 31(14):2569–2591CrossRefGoogle Scholar
  50. Zhang WH, Sun SP (2006) Scale-related topology optimization of cellular materials and structures. Int J Numer Methods Eng 68(9):993–1011MATHCrossRefGoogle Scholar
  51. Zhou M, Shyy YK, Thomas HL (2001) Checkerboard and minimum member size control in topology optimization. Struct Multidisc Optim 21(2):152–158CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.State Key Lab of Structural Analysis for Industrial Equipment and Department of Engineering MechanicsDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations