Skip to main content
Log in

An adaptive dimension decomposition and reselection method for reliability analysis

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Recently, the research community in reliability analysis has seen a strong surge of interest in the dimension decomposition approach, which typically decomposes a multi-dimensional system response into a finite set of low-order component functions for more efficient reliability analysis. However, commonly used dimension decomposition methods suffer from two limitations. Firstly, it is often difficult or impractical to predetermine the decomposition level to achieve sufficient accuracy. Secondly, without an adaptive decomposition scheme, these methods may unnecessarily assign sample points to unimportant component functions. This paper presents an adaptive dimension decomposition and reselection (ADDR) method to resolve the difficulties of existing dimension decomposition methods for reliability analysis. The proposed method consists of three major components: (i) an adaptive dimension decomposition and reselection scheme to automatically detect the potentially important component functions and adaptively reselect the truly important ones, (ii) a test error indicator to quantify the importance of potentially important component functions for dimension reselection, and (iii) an integration of the newly developed asymmetric dimension-adaptive tensor-product (ADATP) method into the adaptive scheme to approximate the reselected component functions. The merits of the proposed method for reliability analysis are three-fold: (a) automatically detecting and adaptively representing important component functions, (b) greatly alleviating the curse of dimensionality, and (c) no need of response sensitivities. Several mathematical and engineering high-dimensional problems are used to demonstrate the effectiveness of the ADDR method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alis OF, Rabitz H (2001) Efficient implementation of high dimensional model representations. J Math Chem 29(2):127–142

    Article  MathSciNet  MATH  Google Scholar 

  • Au SK, Beck JL (1999) A new adaptive importance sampling scheme for reliability calculations. Struct Saf 21(2):135–158

    Article  Google Scholar 

  • Barthelmann V, Novak E, Ritter K (2000) High dimensional polynomial interpolation on sparse grids. Adv Comput Math 12(4):273–288

    Article  MathSciNet  MATH  Google Scholar 

  • Breitung K (1984) Asymptotic approximations for multinormal integrals. ASCE J Eng Mech 110(3):357–366

    Article  Google Scholar 

  • Chowdhury R, Rao BN, Prasad AM (2009) High dimensional model representation for structural reliability analysis. Commun Numer Methods Eng 25(4):301–337

    Article  MathSciNet  MATH  Google Scholar 

  • Eldred MS, Burkardt J (2009) Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification. In: Proceedings of the 47th AIAA aerospace sciences meeting, Orlando, FL

  • Eldred MS, Webster CG, Constantine P (2008) Design under uncertainty employing stochastic expansion methods. In: Proceedings of the 12th AIAA/ISSMO multidisciplinary analysis and optimization conference, Victoria, British Columbia, Canada

  • Foo J, Karniadakis GE (2010) Multi-element probabilistic collocation method in high dimensions. J Comput Phys 229:1536–1557

    Article  MathSciNet  MATH  Google Scholar 

  • Foo J, Wan X, Karniadakis GE (2008) The multi-element probabilistic collocation method (ME-PCM): error analysis and applications. J Comput Phys 227:9572–9595

    Article  MathSciNet  MATH  Google Scholar 

  • Fu G, Moses F (1988) Importance sampling in structural system reliability. In: Proceedings of ASCE joint specialty conference on probabilistic methods, Blacksburg, VA, pp 340–343

  • Ganapathysubramanian B, Zabaras N (2007) Sparse grid collocation schemes for stochastic natural convection problems. J Comput Phys 225(1):652–685

    Article  MathSciNet  MATH  Google Scholar 

  • Gerstner T, Griebel M (1998) Numerical integration using sparse grids. Numer Algorithm 18(3–4):209–232

    Article  MathSciNet  MATH  Google Scholar 

  • Grestner T, Griebel M (2003) Dimension-adaptive tensor-product quadrature. Computing 71(1):65–87

    Article  MathSciNet  Google Scholar 

  • Ghanem RG, Spanos PD (1991) Stochastic finite elements: a spectral approach. Springer, New York

    Book  MATH  Google Scholar 

  • Griebel M (1998) Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing 61(2):151–179

    Article  MathSciNet  MATH  Google Scholar 

  • Griebel M, Holtz M (2010) Dimension-wise integration of high-dimensional functions with applications to finance. J Complex 26(5):455–489

    Article  MathSciNet  MATH  Google Scholar 

  • Hasofer AM, Lind NC (1974) Exact and invariant second-moment code format. ASCE J Eng Mech 100(1):111–121

    Google Scholar 

  • Hu C, Youn BD (2011) An asymmetric dimension-adaptive tensor-product method for reliability analysis. Struct Saf 33(3):218–231

    Article  MathSciNet  Google Scholar 

  • Hurtado JE (2007) Filtered importance sampling with support vector margin: a powerful method for structural reliability analysis. Struct Saf 29(1):2–15

    Article  Google Scholar 

  • Klimke A (2006) Uncertainty modeling using fuzzy arithmetic and sparse grids. PhD thesis, Universität Stuttgart, Shaker, Aachen

  • Kuo FY, Sloan IH, Wasilkowski GW, Wozniakowski H (2010) On decompositions of multivariate functions. Math Comput 79:953–966

    MathSciNet  MATH  Google Scholar 

  • Law AM, Kelton WD (1982) Simulation modeling and analysis. McGraw-Hill, New York

    MATH  Google Scholar 

  • Lee SH, Chen W, Kwak BM (2009) Robust design with arbitrary distributions using Gauss-type quadrature formula. Struct Multidisc Optim 39(3):227–243

    Article  MathSciNet  Google Scholar 

  • Li G, Rosenthal C, Rabitz H (2001a) High dimensional model representations. J Phys Chem A 105:7765–7777

    Article  Google Scholar 

  • Li G, Wang SW, Rabitz H (2001b) High dimensional model representations generated from low dimensional data samples—I: mp-Cut-HDMR. J Math Chem 30(1):1–30

    Article  MathSciNet  Google Scholar 

  • Ma X, Zabaras N (2009) An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J Comput Phys 228(8):3084–3113

    Article  MathSciNet  MATH  Google Scholar 

  • Ma X, Zabaras N (2010) An adaptive high-dimensional stochastic model representation technique for the solution of stochastic partial differential equations. J Comput Phys 229:3884–3915

    Article  MathSciNet  MATH  Google Scholar 

  • Naess A, Leira BJ, Batsevych O (2009) System reliability analysis by enhanced Monte Carlo simulation. Struct Saf 31(5):349–355

    Article  Google Scholar 

  • Nobile F, Tempone R, Webster C (2008) A sparse grid collocation method for elliptic partial differential equations with random input data. SIAM J Numer Anal 46(5):2309–2345

    Article  MathSciNet  MATH  Google Scholar 

  • Noh Y, Choi KK, Du L (2008) Selection of copula to generate input joint CDF for RBDO. In: Proceedings of ASME international design engineering technical conferences (IDETC) and computers and information in engineering conference (CIE), IDETC2008-49494, Brooklyn, New York, United States

  • Paffrath M, Wever U (2007) Adapted polynomial chaos expansion for failure detection. J Comput Phys 226(1):263–281

    Article  MathSciNet  MATH  Google Scholar 

  • Rabitz H, Alis OF (1999) General foundations of high dimensional model representations. J Math Chem 25(2–3):197–233

    Article  MathSciNet  MATH  Google Scholar 

  • Rabitz H, Alis OF, Shorter J, Shim K (1999) Efficient input–output model representations. Comput Phys Commun 117(1–2):11–20

    Article  MATH  Google Scholar 

  • Rahman S, Xu H (2004) A Univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probab Eng Mech 19(4):393–408

    Article  Google Scholar 

  • Rao BN, Chowdhury R (2009) Enhanced high dimensional model representation for reliability analysis. Int J Numer Methods Eng 77(5):719–750

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23:470–472

    Article  MathSciNet  MATH  Google Scholar 

  • Roser BN (1999) An introduction to copulas. Springer, New York

    Google Scholar 

  • Rubinstein RY (1981) Simulation and the Monte Carlo method. Wiley, New York

    Book  MATH  Google Scholar 

  • Smolyak S (1963) Quadrature and interpolation formulas for tensor product of certain classes of functions. Soviet Math Dokl 4:240–243

    Google Scholar 

  • Sobol IM (2003) Theorems and examples on high dimensional model representations. Reliab Eng Syst Saf 79(2):187–193

    Article  MathSciNet  Google Scholar 

  • Tvedt L (1984) Two second-order approximations to the failure probability. Section on structural reliability, A/S Vertas Research, Hovik, Norway

  • Wan X, Karniadakis GE (2006) Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J Sci Comput 28:901–928

    Article  MathSciNet  MATH  Google Scholar 

  • Wei D, Rahman S (2007) Stuctural reliability analysis by univariate decomposition and numerical integration. Probab Eng Mech 22:27–38

    Article  Google Scholar 

  • Wiener N (1938) The homogeneous chaos. Am J Math 60(4):897–936

    Article  MathSciNet  Google Scholar 

  • Xiong F, Greene S, Chen W, Xiong Y, Yang S (2010) A new sparse grid based method for uncertainty propagation. Struct Multidisc Optim 41(3):335–349

    Article  MathSciNet  Google Scholar 

  • Xiu D (2007) Efficient collocational approach for parametric uncertainty analysis. Commun Comput Phys 2(2):293–309

    MathSciNet  MATH  Google Scholar 

  • Xiu D, Hesthaven JS (2005) High order collocation methods for the differential equation with random inputs. SIAM J Sci Comput 27(3):1118–1139

    Article  MathSciNet  MATH  Google Scholar 

  • Xiu D, Karniadakis GE (2002) The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644

    Article  MathSciNet  MATH  Google Scholar 

  • Xu H, Rahman S (2004) A generalized dimension-reduction method for multi-dimensional integration in stochastic mechanics. Int J Numer Methods Eng 61(12):1992–2019

    Article  MATH  Google Scholar 

  • Xu H, Rahman S (2005) Decomposition methods for structural reliability analysis. Probab Eng Mech 20:239–250

    Article  Google Scholar 

  • Youn BD, Wang P (2008) Bayesian reliability-based design optimization using eigenvector dimension reduction (EDR) method. Struct Multidisc Optim 36(2):107–123

    Article  MathSciNet  Google Scholar 

  • Youn BD, Choi KK, Yi K (2005) Performance moment integration (PMI) method for quality assessment in reliability-based robust design optimization. Mech Base Des Struct Mach 33:185–213

    Article  Google Scholar 

  • Youn BD, Zhimin X, Wang P (2007) Reliability-based robust design optimization using the eigenvector dimension reduction (EDR) method. Struct Multidisc Optim 37(5):475–492

    Article  Google Scholar 

  • Youn BD, Zhimin X, Wang P (2008) Eigenvector dimension reduction (EDR) method for sensitivity-free uncertainty quantification. Struct Multidisc Optim 37(1):13–28

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant from the Energy Technology Development Program (2010101010027B) and International Collaborative R&D Program (0420-2011-0161) of Korea Institute of Energy Technology Evaluation and Planning (KETEP), funded by the Korean government’s Ministry of Knowledge Economy, the National Research Foundation of Korea (NRF) grant (No. 2011-0022051) funded by the Korea government, the Basic Research Project of Korea Institute of Machinery and Materials (Project Code: SC0830) supported by a grant from Korea Research Council for Industrial Science & Technology, and the Institute of Advanced Machinery and Design at Seoul National University (SNU-IAMD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeng D. Youn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, C., Youn, B.D. & Yoon, H. An adaptive dimension decomposition and reselection method for reliability analysis. Struct Multidisc Optim 47, 423–440 (2013). https://doi.org/10.1007/s00158-012-0834-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-012-0834-0

Keywords

Navigation