Skip to main content
Log in

Dynamical systems, SIMP, bone remodeling and time dependent loads

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The dynamical systems approach to sizing and SIMP topology optimization, introduced in a previous paper, is extended to the case of time-varying loads. A general dynamical system, satisfying a Lyaponov-type descent condition, is derived and specialized to a goal function combining stiffness and mass. For a cyclic time-dependent load it is indicated how, in the limit of short cycles compared to the overall time scale, this can be handled by multiple load cases. Numerical examples, both for a convex and a non-convex case, illustrates the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The acronym SIMP stands for Solid Isotropic Material with Penalization and is essentially an approach for penalizing intermediate design variable values when optimizing stiffness under a volume constraint (or the reversed). For a detail account we refer to Bendsøe and Sigmund (2003) and Christensen and Klarbring (2009).

  2. In the generalized version of bone remodeling theory, presented by Harrigan and Hamilton (1994a), q = N/m, where N is the exponent of the stiffness relation, m is a positive constant and \(\rho^{1/m}_i\) is the apparent density.

References

  • Achtziger W, Bendsøe MP, Taylor JE (1998) Bounds on the effect of progressive structural degradation. J Mech Phys Solids 46(6):1055–1087

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    Google Scholar 

  • Christensen PW, Klarbring A (2009). An introduction to structural optimization. Springer, Berlin

    MATH  Google Scholar 

  • Dunlop JWC, Hartmann MA, Bréchet YJ, Fratzl P, Weinkamer R (2009) New suggestions for the mechanical control of bone remodeling. Calcif Tissue Int 85:45–54

    Article  Google Scholar 

  • Harrigan TP, Hamilton JJ (1992) Optimality conditions for finite element simulation of adaptive bone remodeling. Int J Solids Struct 29(23):2897–2906

    Article  MATH  Google Scholar 

  • Harrigan TP, Hamilton JJ (1994a) Necessary and sufficient conditions for global stability and uniqueness in finite element simulations of adaptive bone remodeling. Int J Solids Struct 31(1):97–107

    Article  MathSciNet  MATH  Google Scholar 

  • Harrigan TP, Hamilton JJ (1994b) Bone remodeling and structural optimization. J Biomech 27(3):323–328

    Article  Google Scholar 

  • Jang G, Kim Y, Kwak BM (2009) Analogy of strain energy density based bone-remodeling algorithm and structural optimization. J Biomech Eng 131:011012

    Article  Google Scholar 

  • Klarbring A (2009) Topology optimization, dynamical systems, thermodynamics and growth. In: Damkilde L, Andersen L, Kristensen AS, Lund E (eds) Proceedings of the twenty second nordic seminar on computational mechanics, Aalborg, pp 337–344

  • Klarbring A, Torstenfelt B (2010) Dynamical systems and topology optimization. Struct Multidisc Optim 42(2):179–192

    Article  MathSciNet  Google Scholar 

  • Klarbring A, Petersson J, Torstenfelt B, Karlsson M (2003) Topology optimization of flow networks. Comput Methods Appl Mech Eng 192:3909–3932

    Article  MathSciNet  MATH  Google Scholar 

  • Rockafellar RT (1972) Convex analysis. Princeton University Press, Princeton

    Google Scholar 

  • Rozvany GIN, Querin OM, Gaspar Z, Pomezanski V (2002) Extended optimality in topology design. Struct Multidisc Optim 24:257–261

    Article  Google Scholar 

  • Rozvany GIN, Querin OM, Gaspar Z, Pomezanski V (2005) Erratum for the brief note “Extended optimality in topology design” by GIN Rozvany, OM Querin, Z Gaspar, V Pomezanski (SMO 24:257–261, 2002). Struct Multidisc Optim 30(6):504

    Article  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33:401–424

    Article  Google Scholar 

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidisc Optim 22(2):116–124

    Article  Google Scholar 

  • Strömberg N (1997) An augmented Lagrangian method for fretting problems. Eur J Mech A, Solids 16:573–593

    MATH  Google Scholar 

  • Strömberg N (2010) Topology optimization of structures with manufacturing and unilateral contact constraints by minimizing an adjustable compliance-volume product. Struct Multidisc Optim 42(3):341–350

    Article  Google Scholar 

  • Taylor JE, Bendsøe MP (2001) A mutal energy formulation for optimal structural design. Struct Multidisc Optim 22(2):95–101

    Article  Google Scholar 

  • Xie YM, Steven GP (1997) Evolutionary structural optimization. Springer, Berlin, pp 95–101

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Klarbring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klarbring, A., Torstenfelt, B. Dynamical systems, SIMP, bone remodeling and time dependent loads. Struct Multidisc Optim 45, 359–366 (2012). https://doi.org/10.1007/s00158-011-0724-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-011-0724-x

Keywords

Navigation