Skip to main content
Log in

Classification approach for reliability-based topology optimization using probabilistic neural networks

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This research explores the usage of classification approaches in order to facilitate the accurate estimation of probabilistic constraints in optimization problems under uncertainty. The efficiency of the proposed framework is achieved with the combination of a conventional topology optimization method and a classification approach- namely, probabilistic neural networks (PNN). Specifically, the implemented framework using PNN is useful in the case of highly nonlinear or disjoint failure domain problems. The effectiveness of the proposed framework is demonstrated with three examples. The first example deals with the estimation of the limit state function in the case of disjoint failure domains. The second example shows the efficacy of the proposed method in the design of stiffest structure through the topology optimization process with the consideration of random field inputs and disjoint failure phenomenon, such as buckling. The third example demonstrates the applicability of the proposed method in a practical engineering problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Atlas L, Cole R et al (1990) Performance comparisons between backpropagation networks and classification trees on three real-world applications. Adv Neural Inf Process Syst 2:622–629

    Google Scholar 

  • Basudhar A, Missoum S et al (2008) Limit state function identification using Support Vector Machines for discontinous responses and disjoint failure domains. Probab Eng Mech 23:1–11

    Article  Google Scholar 

  • Brown DE, Corruble V et al (1993) A comparison of decision tree classifiers with backpropagation neural networks for multimodal classification problems. Pattern Recogn 26:953–961

    Article  Google Scholar 

  • Bendsøe M, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe M, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    Google Scholar 

  • Cacoullos T (1966) Estimation of a multivariate density. Ann Math Stat 18(2):179–189

    MathSciNet  MATH  Google Scholar 

  • Conti S, Held H, Pach M et al (2008) Shape optimization under uncertainty – A stochastic programming perspective. SIAM J Optim 19(4):1610–1632

    Article  MathSciNet  Google Scholar 

  • Chen S, Chen W, Lee S (2010) Level set based robust shape and topology optimization under random field uncertainties. Struct Multidiscipl Optim 41(4):507–524

    Article  MathSciNet  Google Scholar 

  • Chien YT, Fu KS (1967) On the generalized Karhunen-Loeve expansion. IEEE Trans Inf Theory 13:518–520

    Article  MATH  Google Scholar 

  • Choi S, Grandhi RV et al (2006) Reliability- based design optimization. London, Springer

    Google Scholar 

  • Chtioui Y, Bertrand D et al (1997) Comparison of multilayer perceptron and probabilistic neural networks in artificial vision. Application to the discrimination of seeds. J Chemom 11(2):111–129

    Article  Google Scholar 

  • Curram SP, Mingers J (1994) Neural networks, decision tree induction and discriminant analysis: an emperical comparison. J Oper Res Soc 45(4):440–450

    MATH  Google Scholar 

  • Cybenko G (1989) Approximation by superposition of a sigmoidal function. Math Control Signals Syst 2:303–314

    Article  MathSciNet  MATH  Google Scholar 

  • Dietterich TG, Bakiri G (1995) Solving multiclass learning problems via error-correcting output codes. J Artif Intell Res 2:263–286

    MATH  Google Scholar 

  • Dobbs MW, Felton LP (1969) Optimization of truss geometry. J Struct Div ASCE 95:2105–2118

    Google Scholar 

  • Duda PO, Hart PE (1973) Pattern classification and scene analysis. New York, Wiley

    MATH  Google Scholar 

  • Frecker M, Ananthasuresh GK, Nishiwaki S, Kikuchi N, Kota S (1997) Topological synthesis of compliant mechanisms using multi-criteria optimization. ASME J Mech Des 119(2):238–245

    Article  Google Scholar 

  • Fukunaga K, Koontz WLG (1970) Application of the Karhunen-Loève Expansion to feature selection and ordering. IEEE Trans Comput C-19(4):311–318

    Article  Google Scholar 

  • Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4:251–257

    Article  Google Scholar 

  • Hornik K, Stinchcombe M et al (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366

    Article  Google Scholar 

  • Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24:498–520

    Article  Google Scholar 

  • Huang MS, Lippmann RP (1987) Comparisons between neural net and conventional classifiers. In: IEEE 1st international conference on neural networks. San Diego, CA, pp 485–493

  • Hurtado JE, Alvarez DA (2003) Classification approach for reliability analysis with stochastic finite-element modeling. J Struct Eng 129(8):1141–1149

    Article  Google Scholar 

  • Kharmanda G, Olhoff N et al (2004) Reliability-based topology optimization. Struct Multidiscipl Optim 26(5):295–307

    Article  Google Scholar 

  • Kirsch U (1990) On singular topologies in optimum structural design. Struct Multidiscipl Optim 2:133–142

    Google Scholar 

  • Kogiso N, Ahn W, Nishiwaki S et al (2008) Robust topology optimization for compliant mechanisms considering uncertainty of applied loads. J Adv Mech Des Syst Manuf 2(1):96–107

    Article  Google Scholar 

  • Maute K, Frangopol DM (2003) Reliability-based design of MEMS mechanisms by topology optimization. Comput Struct 81(8–11):813–824

    Article  Google Scholar 

  • McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245

    Article  MathSciNet  MATH  Google Scholar 

  • Michelle AGM (1904) The limits of economy of material in frame structures. Philos Mag 8(47):589–597

    Google Scholar 

  • Michie D, Spiegelhalter DJ et al (1994) Machine learning, neural, and statistical classification. London, UK

  • Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33:1065–1076

    Article  MathSciNet  MATH  Google Scholar 

  • Patel J, Choi S-K (2009) Optimal synthesis of mesostructured materials under uncertainty. In: 50th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and material conference and 5th AIAA multidisciplinary design optimization specialist conference. Palm Springs, CA

  • Patwo E, Hu MY et al (1993) Two-group classification using neural networks. J Decis Sci 24(4):825–845

    Article  Google Scholar 

  • Richard MD, Lippmann R (1991) Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Comput 3:461–483

    Article  Google Scholar 

  • Rozvany GIN, Bendsøe MP, Kirsch U (1995) Layout optimization of structures. Appl Mech Rev 48:41–119

    Article  Google Scholar 

  • Seepersad CC, Allen JK, McDowell DL, Mistree F (2006) Robust design of cellular materials with topological and dimensional imperfections. Mech Des 128:1285–1297

    Article  Google Scholar 

  • Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20:351–368

    Article  Google Scholar 

  • Specht DF (1967) Generation of polynomial discriminant functions for pattern recognition. IEEE Trans Electron Comput EC-16:308–319

    Article  Google Scholar 

  • Specht DF (1990) Probabilistic neural networks. Neural Netw 3:109–118

    Article  Google Scholar 

  • Sved G, Ginos Z (1968) Structural optimization under multiple loading. Int J Mech Sci 8:803–805

    Article  Google Scholar 

  • Tsui KL (1992) An overview of Taguchi method and newly developed statistical methods for robust design. IIE Trans 24(5):44–57

    Article  MathSciNet  Google Scholar 

  • Tu J, Choi KK (1997) A performance measure approach in reliability- based structural optimization. Technical Report R97–02, University of Iowa

  • Wang Y, Adali T et al (1998) Quantification and segmentation of brain tissues for MR images: a probabilistic neural network approach. IEEE Trans Image Process 7(8):1165–1181

    Article  Google Scholar 

  • Wang MY, Chen SK, Wang X et al (2005) Design of multi-material compliant mechanisms using level set methods. ASME J Mech Des 127(5):941–956

    Article  Google Scholar 

  • Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kauffman Publications, San Francisco

    MATH  Google Scholar 

  • Zhang GP (2000) Neural networks for classification: a survey. IEEE Trans Syst Man Cybern C Appl Rev 30(4):451–462

    Article  Google Scholar 

  • Zhou M (1996) Difficulties in truss topology optimization with stress and local buckling constraints. Struct Multidiscipl Optim 11:134–136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Kyum Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, J., Choi, SK. Classification approach for reliability-based topology optimization using probabilistic neural networks. Struct Multidisc Optim 45, 529–543 (2012). https://doi.org/10.1007/s00158-011-0711-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-011-0711-2

Keywords

Navigation